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A B S T R A C T

Endangerment and extinction of threatened populations can often be accelerated by genomic contamination
through infiltration with alien alleles. With a growing anthropogenic footprint, many such hybridization events
are human-mediated. The Milky Stork (Mycteria cinerea) is one such species whose genomic composition is
threatened by human-mediated hybridization with its sister taxon, the Painted Stork (Mycteria leucocephala). A
comprehensive investigation of the stork population in Singapore using three complementary population-
genomic approaches revealed a large proportion of hybrids that have undergone several generations of genomic
leakage from Painted Storks and fall along a genetic cline that closely mirrors a phenotypic cline from pure Milky
to pure Painted. Although originating from a limited number of introduced Painted Storks, these hybrids are now
an integral part of both the wild and captive Singaporean and southern peninsular Malaysian stork population.
Genetically informed conservation management including the isolation of hybrids in captivity and a strict re-
moval of hybrids from the wild along with a release of genetically pure Milky Storks is imperative for continued
survival. Similar approaches must become routine in endangered species conservation as human-mediated hy-
bridization increases in volume.

1. Introduction

The world is currently facing the sixth mass extinction at an ac-
celerated pace (Ceballos et al., 2015), majorly attributed to human
impact on the environment (Barnosky et al., 2011). Apart from habitat
loss and fragmentation (Turner, 1996; Krauss et al., 2010), extinction
through hybridization is one of the major threats to endangered species
(Rhymer and Simberloff, 1996; Wolf et al., 2001; Todesco et al., 2016).
Due to the dynamic nature of hybridization or inter-specific gene flow
(Mallet, 2005; Rheindt and Edwards, 2011), the genomic composition
of endangered populations can be compromised by the infiltration of
alien alleles into the native gene pool (Rhymer and Simberloff, 1996;
Allendorf et al., 2001; Wolf et al., 2001). Facing decline in conspecific
mates, individuals of threatened populations become more susceptible
to mate with other species, introducing alien alleles into their genome
(Pierce, 1996; Pinto et al., 2016; Lawson et al., 2017). Previous studies
have documented how hybridization can lead to hybrid swarms
(Allendorf et al., 2001), species collapse (Kleindorfer et al., 2014) and
eventual extinction (Rhymer and Simberloff, 1996; Wolf et al., 2001).
Through this process of introgression, endangered species with very
small populations can eventually get absorbed into the genome of the

more widespread species.
There are multiple examples of prominent endangered species that

have been threatened with extinction through hybridization.
Hybridization with coyotes (Canis latrans) is the primary threat to the
critically endangered red wolf (Canis rufus) in North Carolina
(Fredrickson and Hedrick, 2006), which itself was shown to be a hybrid
lineage from coyote and a declining population of grey wolf (Canis
lupus) (vonHoldt et al., 2016). The critically endangered Chinese
Crested Tern (Thalasseus bernsteini), with<100 individuals, is threa-
tened by hybridization with Greater Crested Terns (Thalasseus bergii) in
China (Yang et al., 2018). Interbreeding with Blue-winged Warbler
(Vermivora cyanoptera) threatens Golden-winged Warbler (Vermivora
chrysoptera) in North America (Moulton et al., 2017). Northern Spotted
Owl (Strix occidentalis caurina; Kelly and Forsman, 2004), Grevy's zebra
(Equus grevyi; Cordingley et al., 2009), Black Stilt (Himantopus novae-
zelandiae; Steeves et al., 2010), giant sable antelope (Hippotragus niger
variani; Pinto et al., 2016), and Mangrove Finch (Geospiza heliobates;
Lawson et al., 2017) are several other endangered species whose
genomic composition is threatened by introgression.

While hybridization is predominantly a natural process, introgres-
sion of alien alleles can also be human-mediated. Human impacts such
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as landscape changes (vonHoldt et al., 2016; Moulton et al., 2017),
introduction of exotic species (Huxel, 1999; Vilà et al., 2000), climate
change (Garroway et al., 2010; Canestrelli et al., 2017), wildlife trade
(Fong and Chen, 2010), and pollution (Seehausen et al., 1997) can
bring two species into fresh contact and lead to hybridization. This
could happen through habitat changes and resulting range shifts,
breakdown of isolating mechanisms due to environmental changes,
direct transportation of species outside their natural range, to name a
few. A growing human footprint on our planet leads to increased in-
stances of secondary contact between previously allopatric species that
can hybridize (Moulton et al., 2017; Grabenstein and Taylor, 2018).
Hence, studies to characterize genomic contamination and design ef-
fective solutions for conservation management have become increas-
ingly important.

Here, we present one of the first studies to use genome-wide data to
shed light on the genomic introgression in a threatened species, the
endangered Milky Stork (Mycteria cinerea). The Milky Stork is found in
coastal mangroves, mudflats, and estuaries across Southeast Asia
(Fig. 1; Hancock et al., 2010; Eaton et al., 2016; Birdlife International,
2018) and is currently considered endangered on the International
Union for the Conservation of Nature (IUCN) red list with about 1500
individuals left in the wild (Birdlife International, 2018). The popula-
tion trend of Milky Storks is rapidly declining (Li et al., 2006; Li and
Ounsted, 2007) due to widespread habitat destruction and hunting
(Verheugt, 1987; Iqbal et al., 2008). The Milky Stork and its sister
taxon, the Painted Stork (Mycteria leucocephala), have been reported to
undergo frequent hybridization to produce reproductively viable off-
spring in captivity (Li et al., 2006). Genetically, the two species exhibit
0.9% divergence in mitochondrial cytochrome b indicating recent di-
vergence (Slikas, 1997). Even though Milky Storks have historically
overlapped with Painted Storks in a few regions (Fig. 1; Campbell et al.,
2006), reports of hybridization in the wild have only started appearing
since the recent drastic decline of the population of Milky Storks (e.g.,

Eames, 2007). These recent hybridization events are presumably due to
limited mate choice in mixed nesting colonies (Li et al., 2006; Hancock
et al., 2010), hence further putting the Milky Stork in peril. Morpho-
logically, the Painted Stork is differentiated from the Milky Stork by the
presence of a black pectoral band and a pink flush in the inner wing
coverts and tertials (Fig. 1; Robson, 2015; Elliott et al., 2018a, 2018b).
Reported hybrids display a mix of these morphological characteristics
(Li et al., 2006). This admixture may compromise the genomic com-
position of the Milky Stork, as has been observed in other threatened
birds (Barilani et al., 2007; Lawson et al., 2017). Such admixture can
also counteract the efforts of ongoing captive breeding and re-
introduction programs (Yaacob, 1994; Ismail et al., 2011; Faiq et al.,
2016) by contaminating the Milky Storks' gene pool with Painted Stork
alleles (Urfi, 2011).

In the southernmost Malay Peninsula, Milky Storks have been held
in captivity since the late 1980s, with inadvertent cross-breeding events
with Painted Stork whenever the two were held in the same enclosure
(Li et al., 2006). A few of these hybridized storks have escaped into the
wild. Although some of these hybrid escapees have been recaptured,
others continue to roam freely, posing a major threat to the genomic
composition of the Milky Stork population in this area (Yaacob, 1994).
It is speculated that the stork population in Singapore has suffered
heavily from introgressive hybridization, with many individuals
bearing intermediate traits at variable proportions (Tsang, 2007;
Wilton-Jones, 2016) in an area that is within the native historical range
of the Milky Stork (Fig. 1; Gibson-Hill, 1949; Medway and Wells, 1976;
Keng and Hails, 2007; Clements et al., 2017). In this study, we used a
double digest RAD sequencing (ddRADseq) approach (Peterson et al.,
2012) to study the genetic makeup of the stork population in Singapore.
One of the primary aims was to characterize the patterns of in-
trogressive hybridization and genomic leakage from Painted into native
Milky Storks.

Fig. 1. Distribution range of the Milky Stork (Mycteria cinerea) and the Painted Stork (Mycteria leucocephala) in South and Southeast Asia. Species range modified
from del Hoyo et al. (2018) with updates of recent records. Map was generated using QGIS v2.18.2.
Data were sourced from www.naturalearthdata.com for the coastline of landmasses. Illustrations from del Hoyo et al. (2018).
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2. Methods

2.1. Sample collection and sequencing

We obtained a total of 46 tissue samples of Singaporean stork in-
dividuals of a wild/escaped (11), captive (28), and unknown origin (7)
through Jurong Bird Park (Appendix B, Table B.1). The birds of un-
known origin had an incomplete record but were likely captive. The
individuals were caught using drop net traps. We followed the Wildlife
Reserves Singapore (WRS) Animal Welfare Code approved by WRS
Animal Welfare and Ethics Committee during sample collection. The
morphological identity of six individuals among the 46 samples was
recorded with photographic documentation, but unfortunately this was
not available for the remaining 40 samples. These six individuals were
classified as “pure”-looking for either species or as hybridized on the
basis of (1) the presence or absence of a black breast band, (2) the
presence or absence of a pink flush on the tertials, inner secondaries
and wing coverts, and (3) the white versus black coloration of the up-
perwing coverts (Fig. 1; Robson, 2015; Elliott et al., 2018a, 2018b).
These traits are well known to be exclusive to one or the other species
and must all simultaneously be present for an individual to classify as
pure. Intermediacy in these characters is widely observed in hybrids (Li
et al., 2006). Intra-specific morphological variation within both of these
stork species is limited and does not relate to the specified characters
(Urfi and Kalam, 2006; Ong et al., 2012).

We used Qiagen DNeasy Blood and Tissue kits (Qiagen, Germany)
for DNA extraction and a Qubit® 2.0 High Sensitivity DNA Assay
(Invitrogen, USA) for DNA quantification. We adopted the ddRADseq
library preparation protocol from Peterson et al. (2012) with slight
modifications.

In our modified approach, genomic DNA was digested with the re-
striction enzymes EcoRI and MspI, and the restricted samples were li-
gated to a unique P1E adapter using T4 DNA ligase. After ligation,
samples of the same concentration band were pooled into two pools.
Adapter-ligated DNA fragments were size selected with Pippin Prep
(Sage Science, USA, setting: 350 bp “tight”) using 2% agarose. Size
selected fragments were amplified through polymerase chain reaction
(PCR) for 10 cycles and a unique PCR 2 primer was used for each pool.
Cleanup after restriction, ligation, and size selection was performed
with AMPure XP beads (Beckman Coulter, USA). We used a Qubit®
dsDNA High Sensitivity Assay Kit (Invitrogen, USA) for library quan-
tification, and an Agilent High Sensitivity DNA kit (Agilent
Technologies, USA) to check the quality of the pooled libraries. The
pooled libraries were sequenced on an Illumina HiSeq 4000 lane at
Novogene (Singapore). We obtained 150 base pair (bp) paired end
reads after sequencing.

2.2. Quality filtering and SNP calling

The quality of the raw sequence data was checked using FastQC
v0.11.7 (Babraham Bioinformatics, UK). Reads with uncalled bases
and/or low quality (Phred score < 20) were removed. We demulti-
plexed and filtered raw sequence data to obtain reads for each in-
dividual sample using the process_radtags command installed in Stacks
v1.46 (Catchen et al., 2013). We aligned the reads to the reference
genome of the crested ibis Nipponia nippon (Li et al., 2014) using the

software package BWA 0.7.12 (Li, 2013). Aligned reads of low mapping
quality (MAPQ score < 20) were removed to ensure unique mapping
using SAMtools v0.1.19 (Li et al., 2009).

SNPs were called with a minimum stack depth of 10 using the re-
f_map pipeline in Stacks v1.46 (Catchen et al., 2013). SNPs present
in< 90% of all samples were filtered using the populations module in
Stacks v1.46. All samples were defined as one population and only the
first SNP of every locus was retained to avoid linkage issues.

We removed any loci and individuals that contained>10% missing
data using PLINK v1.9 (Chang et al., 2015). We also filtered linked loci
using PLINK v1.9 (Chang et al., 2015) with the following parameters:
sliding window of 25 SNPs, step size of 10 and pairwise linkage dis-
equilibrium<0.95, obtaining a final set of 9465 loci for 46 individuals.

2.3. Population genomic analysis

To visually illustrate the genetic relationship among all individuals,
we performed principal component analysis (PCA) using the R package
SNPRelate (Zheng, 2013) in RStudio v.1.0.143 (RStudio Team, 2015).

We estimated individual ancestries with a maximum likelihood al-
gorithm using ADMIXTURE v1.3.0 (Alexander et al., 2009; Alexander
and Lange, 2011). In the ADMIXTURE analysis, we explored a number
of ancestral populations (K= 1, 2, 3; Appendix A, Fig. A.1, Fig. 2a) and
employed cross-validation values (CV) to identify the best K value with
the lowest CV error (K= 2) for an appropriate modelling choice
(Alexander and Lange, 2011). We further explored individual-based
pairwise coancestry using the Markov chain Monte Carlo (MCMC)
coalescence algorithm as implemented in fineRADstructure v0.3.1
(Malinsky et al., 2018) using haplotype linkage information. While
preparing the fineRADstructure input file (using the STACKS output
file), we removed samples with>20% missing data and more than five
SNPs at each locus. We also explored>10% missing data as a cutoff,
but results were similar, prompting us to continue only with results
from the> 20% missing data analysis (Appendix A, Fig. A.2). In the
fineRADstructure pipeline, we used RADpainter to calculate the coan-
cestry matrix followed by assigning individuals to populations at de-
fault parameters, including a burn-in period of 100,000 and 100,000
MCMC iterations. Pairwise kinship relationships among individuals
were investigated in SNPRelate (Zheng, 2013).

In addition, we performed Bayesian population clustering using
fastSTRUCTURE (Raj et al., 2014). We ran fastSTRUCTURE for a vari-
able number of clusters (K=1, 2, 3) using both simple and logistic
prior models.

To identify genotype frequency classes, we used HYBRIDDETECTIVE
(Wringe et al., 2017a), an R package workflow that implements hybrid
detection using the Bayesian model based program NEWHYBRIDS v.1.1
(Anderson and Thompson, 2002). We obtained different panel sizes of
unlinked informative SNP loci (50, 100, 200, 400) based on high FST
values using the getTopLoc function. We used genotype data of in-
dividuals with a high probability of being pure Milky Storks or Painted
Storks based on the ancestry fraction threshold (Q values > 0.999
from ADMIXTURE analysis) as the input in this step. We created three
replicates of three sets of simulated data with six different genotype
frequency classes (two pure populations, first and second generation
hybrids [F1 & F2], and backcross of F1 with each of the pure popula-
tions) for each panel size using the freqbasedsim_AlleleSample function.

Fig. 2. Population structure of storks in Singapore using ADMIXTURE, NEWHYBRIDS, and principal component analysis (PCA). (a) Each stork is represented by a
stacked column of ancestral genetic components shown in color for K= 2 based on ADMIXTURE. The two colors represent two different ancestral populations.
Pictures of wing feathers of six of these storks are shown. (b) Genotype frequency class assignment of storks in NEWHYBRIDS using 400 diagnostic SNPs filtered for
high FST and low linkage. Each stork is represented by a stacked column of probability of belonging to one of the six genotype frequency classes: pure Milky Storks,
pure Painted Storks, first generation hybrids (F1), second generation hybrids (F2), and backcrosses of F1 to pure Milky Stork or pure Painted Stork. Sample names are
indicated on the x-axis. Asterisk (*) indicates samples with known morphological identity. (c) Principal components 1 and 2 (PC1 and PC2) accounted for a
combined> 16% of observed variability in the analysis. The enlarged blue circles indicate samples with known morphological identity. Pictures of breast plumage of
these storks are shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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We analyzed the simulated data sets using NEWHYBRIDS as im-
plemented in the R package parallelnewhybrids (Wringe et al., 2017b)
(burnin period: 50,000; MCMC sweeps: 300,000). We checked the re-
sults for convergence of MCMC chains followed by evaluation of ac-
curacy, efficiency, and power of class assignment of each genotype
frequency class for different panel sizes. We found the panel size of 400
loci to be most successful for class assignment at all posterior prob-
ability thresholds (Appendix A, Figs. A.3–A.5) and hence used it for
investigation of experimental data. We then evaluated the 46 storks in
Singapore with parallelnewhybrids (Wringe et al., 2017b) (burnin
period: 50,000; MCMC sweeps: 300,000), checking the results for
convergence of MCMC chains. Simulated pure individuals were in-
cluded in this analysis to improve efficacy.

3. Results

ADMIXTURE and PCA analysis along with the available morpholo-
gical data (Fig. 2) revealed a genomic cline in the composition of the
stork population in Singapore, ranging from individuals with a rela-
tively high Milky Stork genomic composition to those with a relatively
high Painted Stork composition in their genome, with individuals of
intermediate ancestral genetic proportions of the two species in be-
tween. ADMIXTURE identified 18 “pure” Milky Storks and three “pure”
Painted Storks (Q values > 0.99, Appendix B, Table B.2). The re-
maining 25 individuals have different levels of genetic proportions from
both species (Fig. 2a). In PCA analysis, the stork genome is differ-
entiated along principal component 1 based on Painted or Milky Stork
contribution, as indicated by their morphology (Fig. 2c). Two in-
dividuals, JBP22 and JBP26, were identified as relatively pure Painted
Storks based on ADMIXTURE analysis (Fig. 2a) and showed the dis-
tinctive black breast band (Fig. 2c) and black wing coverts of that
species (Fig. 2a). Another two individuals, JBP21 and JBP23, were
identified as relatively pure Milky Storks according to ADMIXTURE
(Fig. 2a) and lacked the breast band (Fig. 2c) while exhibiting clean
white wing coverts (Fig. 2a) typical of that species. One individual,
JBP28, was a genetic intermediate characterized by a predominantly
Painted Stork phenotype (Fig. 2a) yet with a diffuse breast band
(Fig. 2c). Another admixed sample, JBP24, with a predominantly Milky
Stork genome (Fig. 2a) showed diffuse pink in the plumage (Fig. 2a) but
an otherwise Milky Stork phenotype (Fig. 2c). The population structure
inferred through fastSTRUCTURE indicated a greater number of “pure”
Painted and Milky Storks as compared to ADMIXTURE (Appendix A,
Fig. A.6).

The fineRADstructure coancestry matrix revealed that many of the
Milky Storks identified as “pure” by ADMIXTURE are genetically more
similar to one another as compared to the three Painted Storks identi-
fied as “pure” by ADMIXTURE (Fig. 3). These three “pure” Painted
Storks clustered with hybrid stork individuals with a ≥50% Painted
Stork ancestral proportion (Fig. 3). The majority of the hybrids are
neither closely related to one another nor to any of the putatively pure
individuals (Fig. 3). A few closely related “pure” Milky Storks (JBP01,
JBP03, JBP06; as identified by ADMIXTURE) seem to be close kin to
each other, as do a few of the hybrids (JBP02, JBP04, JBP10) (kinship
coefficient > 0.25, Appendix B, Table B.3).

We used NEWHYBRIDS to detect genotype frequency classes in the
Singaporean stork population based on 400 diagnostic SNPs (Fig. 2b).
Simulated data showed that this panel of 400 SNPs is able to assign
individuals to the six genotype frequency classes with accuracy, effi-
ciency and a power of 100% at a probability threshold of 90% (Ap-
pendix A, Figs. A.3–A.5). Neither “pure” Painted Stork nor any first
generation hybrid (F1) between pure parents of each species was
identified. The results reveal a greater proportion of “pure” Milky
Storks as compared to the ADMIXTURE analysis (Fig. 2a, b). JBP24,
identified as a hybrid in ADMIXTURE, is identified as “pure” Milky in
NEWHYBRIDS class assignment (Fig. 2a, b). Nine storks were identified
as backcrosses between F1 and pure Milky Storks, and another five as

second generation hybrids (F2). WS10, identified as “pure” Painted in
ADMIXTURE, emerged as F2, while JBP22, another “pure” Painted
Stork in ADMIXTURE, is revealed as a backcross between F1 and pure
Painted Storks (Fig. 2a, b). Three samples dropped out during NEWH-
YBRIDS analysis due to computational underflow (UNK5, UNK6,
JBP26).

4. Discussion

Our study provides the first estimation of the population genomic
status of the endangered Milky Stork in Singapore, with an evaluation
of genetic infiltration from the Painted Stork. Our results indicate the
existence of storks of a relatively high proportion of Milky ancestry in
the population, which may putatively be pure, even though a majority
of sampled individuals carried the signature of different degrees of in-
trogression from Painted Storks. Moreover, a set of morphological traits
seemed to closely correspond to levels of hybridization as detected
through genomic approaches.

4.1. Hybridization endangers the Milky Stork

Based on a genome-wide dataset of 9465 SNPs, storks in Singapore
display a genomic cline ranging from a high Painted Stork component
to a high Milky Stork component that closely tracks a similar mor-
phological cline (Fig. 2). In this population, ADMIXTURE identified>
50% (n=25) from among a panel of 46 storks as hybrids (Fig. 2a). An
alternative genotype class assignment approach using a select panel of
400 diagnostic SNPs identified ~35% (n=15) of samples as hybrids,
with a large overlap with ADMIXTURE. These results attest to a high
incidence of hybridization in a Milky Stork population that has been
affected by infiltration of a limited number of Painted Storks or their
hybrid offspring for only ~2 decades. The population of Milky Storks
roaming in the wild in southern peninsular Malaysia and Singapore
may number ~100–150 individuals (pers. obs.; Li et al., 2006; Ismail
et al., 2011; Ismail and Rahman, 2016), which comprises approximately
7–10% of the global Milky Stork population. This high incidence of
hybrids is alarming for a species that only has 1500 individuals left in
the wild (Birdlife International, 2018).

NEWHYBRIDS did not identify any pure Painted Storks or any first-
generation hybrids between pure parents of either species in the study
population (Fig. 2b). This result is expected, given that the Painted
Stork is non-native to Singapore (Fig. 1) and presumably in the min-
ority. The initial source of Painted Stork DNA would have been from
only a few escapees from collection-based institutions. Over the course
of ~2 decades, these Painted Storks would have quickly lost their ge-
netic purity and backcrossed into the native Milky Stork population.
Given the methodological difference from NEWHYBRIDS (use of a di-
agnostic panel of loci vs all loci), ADMIXTURE provides a hybrid as-
signment acknowledging the existence of pure individuals for both
species. However, NEWHYBRID yields a hybrid assignment acknowl-
edging the existence of unsampled pure individuals through simulation.
Therefore, the “pure” Painted Storks identified by ADMIXTURE are
unlikely to be pure, but merely comprise those storks with the highest
Painted Stork genetic component among our panel of 46 storks. In a
similar vein, the coancestry matrix reveals that the majority of hybrids
as identified by ADMIXTURE are neither closely related to one another
nor to any of the putatively pure individuals, indicating recent hy-
bridization (Fig. 3, Barrera-Guzmán et al., 2017). This pattern illus-
trates the pernicious nature of accidental releases of exotic congeners or
hybrids for the well-being of threatened species, even if restricted in
scope. Our results underscore the importance for immediate conserva-
tion action for the Milky Stork, and for adding the threat of genomic
contamination to the list of factors that put the Milky Stork at risk (e.g.,
habitat degradation, poaching etc.).

Our results attest to hybridization between both storks in Singapore
for several generations in the wild as well as in captivity. Storks with a
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high Painted Stork genetic component are present in both captive and
wild populations, posing a threat to the remaining pure Milky Storks in
Singapore. We recommend the use of both our analytical approaches to
identify hybrids for management action: ADMIXTURE may over-esti-
mate the purity for the minority species (i.e., Painted Stork JBP22,
WS10, and JBP26) while HYBRIDDETECTIVE may overlook smaller
amounts of introgression (i.e., hybrid JBP24).

4.2. Phenotypic admixture is a reliable first indicator of hybridization

Though our study demonstrates a correlation between the genomic
and morphological cline among the two storks in Singapore (Fig. 2), it
is based on a small morphological dataset of six individuals.

Even so, interesting phenotypic patterns arise: One hybrid, JBP24
(as identified based on ADMIXTURE) is predominantly Milky in phe-
notype but exhibits traces of pink in its wing coverts, consistent with
Painted admixture but contra the NEWHYBRIDS class assignment as
“pure”Milky (Fig. 2). Pink in stork plumage is generated by carotenoid-
derived pigments (Thomas et al., 2014), precursors of which are de-
rived from the diet (Negro and Garrido-Fernandez, 2000). However,
recent studies have identified the role of different genes in carotenoid

processing and transport (Toews et al., 2016; Toomey et al., 2017).
Little is known about the exact nature of the genes involved in car-
otenoid color production. However, the functional loci responsible for
the generation of pink color would form a minute percentage of the
entire genome and are easy to fall outside the top 400 locus panel with
high FST used in the NEWHYBRIDS assignment of JBP24 as a “pure”
Milky Stork. The inclusion of stork individuals of a confirmed pure
Milky ancestry, perhaps from native parts of the Indonesian range,
would make this analysis more robust.

4.3. The remaining wild population

The wild population of Singaporean storks, as represented by 11
individuals in our dataset (WS1 to WS11), contained one individual
with a very high Painted Stork genetic component (WS10), four Milky
Storks identified as “pure” by both ADMIXTURE and NEWHYBRIDS, as
well as six hybrids with varying proportions of mixed genotypes. As all
individuals were sampled on the same day at the same location, Milky
Storks at different points along the introgressive spectrum seem to form
flocks in the wild. Because these storks nest colonially, they probably
breed in mixed nesting colonies (Kahl, 1987; Hancock et al., 2010;

Fig. 3. Clustered fineRADstructure coancestry matrix of storks in Singapore. The highest coancestry value is indicated by colors in blue. The lowest value of
coancestry is indicated by shades of yellow. Sample names are indicated on the axes. The distinct red block on the bottom right corner denoted by a black border
consists of relatively pure Milky Storks according to ADMIXTURE. The “pure” Painted Storks identified by ADMIXTURE clustered together with hybrid stork
individuals with a ≥50% Painted Stork ancestral proportion as indicated by the red block on the top left corner demarcated by a black border. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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Elliott et al., 2018a) promoting hybridization. Based on our results, the
endangered Milky Stork in Singapore has already had several genera-
tions of genetic leakage from Painted Storks. Moreover, Singapore is
situated at the tip of the Malay Peninsula, directly adjacent to the last
stronghold of viable breeding Milky Stork populations in the mangroves
of eastern Sumatra, i.e. Kumpai Lake, Kuala Puntian, and Banyuasin
peninsula (Iqbal and Hasudungan, 2008; Iqbal et al., 2008; Iqbal et al.,
2012). If allowed to increase in population size, hybrid storks from the
Malay Peninsula may well disperse and infiltrate these core regions,
compromising the wild gene pool of Milky Storks, similar to what
happened when the hybrid escapees infiltrated the Singaporean popu-
lation.

4.4. Future conservation action

The genomic composition of Milky Storks in Singapore is highly
compromised by hybridization, and immediate conservation action is
warranted. Future conservation action should be based on conservation
genetic data to avoid an exacerbation of the problem if genetically
admixed individuals are used for conservation breeding or reintroduc-
tion.

We recommend that hybrid storks in Jurong Bird Park (Singapore),
Zoo Negara (Kuala Lumpur), and Dusit Zoo (Bangkok) should be
identified and isolated from pure Milky Storks to prevent crossbreeding,
and that a thorough genetic analysis should ensure the purity of any
planned breeding programs and/or releases. Finally, we recommend a
strict removal of hybrids from the wild. Humane removal of hybrids can
be carried out the same way that tissue samples were obtained (via drop
net traps) and supplemented with the release of pure Milky Storks
(confirmed by genomic analysis). Caught hybrid individuals can then be
kept in isolated enclosures. These conservation management guidelines
could be applied to other endangered species threatened by genomic
contamination through hybridization.
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