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Abstract

Bird collisions with buildings are responsible for a large number of bird deaths in cities
around the world, yet they remain poorly studied outside North America. We conducted
one of the first citywide fine-scale and landscape-scale analyses of bird–building collisions
in Asia and used maximum entropy modeling (as commonly applied to species distribution
modeling) in a novel way to assess the drivers of bird–building collisions in the tropical
city-state of Singapore. We combined 7 years of community science observations with pub-
licly available building and remote sensing data. Drivers of bird–building collisions varied
among taxa. Some migratory taxa had a higher relative collision risk that was linked to areas
with high building densities and high levels of nocturnal blue light pollution. Nonmigratory
taxa had a higher collision risk in areas near forest cover. Projecting our results onto offi-
cial long-term land-use plans, we predicted that future increases in bird–building collision
risk stemmed from increases in blue light pollution and encroachment of buildings into
forested areas and identified 6 potential collision hotspots linked to future developments.
Our results suggest that bird–building collision mitigation measures need to account for
the different drivers of collision for resident and migratory species and show that combin-
ing community science and ecological modeling can be a powerful approach for analyzing
bird–building collision data.
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INTRODUCTION

Bird collisions with buildings are prevalent across cities world-
wide and represent a significant source of urban avian mortali-
ties (Klem, 1989; Loss et al., 2015). In North America alone, it is
estimated that from 365 to 988 million birds die from building
collisions annually (Loss et al., 2014), second only to the number
of cat-predation-related mortalities (Loss et al., 2013).

Despite the global nature of this phenomenon, significant
geographical and methodological biases exist in the understand-
ing of bird–building collisions. For one, most bird–building
collision studies have focused on temperate North America,
specifically on migratory Nearctic species (Basilio et al., 2020).
Relatively few studies have focused on the tropics, especially the
Paleotropics (Basilio et al., 2020; Tan et al., 2017). Furthermore,
most studies of bird–building collisions have been based on
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systematic surveys conducted at very fine spatial scales (survey
transects ranging from 1 to 21 buildings, usually on university
campuses or in city centers) (Elmore et al., 2020; Hager et al.,
2017). Although results of these studies broadly suggest col-
lision rates are correlated with urban abiotic factors, such as
the glass area on building façades (Borden et al., 2010; Cusa
et al., 2015; Hager et al., 2008), building size (Elmore et al.,
2020; Hager et al., 2017), nocturnal light pollution (Lao et al.,
2020; Longcore & Rich, 2004; Winger et al., 2019), regional
urbanization (Hager et al., 2017), and biotic factors, such as
vegetation density (Cusa et al., 2015) and vegetation proxim-
ity (Barton et al., 2017; Gelb & Delacretaz, 2009; Rebolo-Ifrán
et al., 2019), the limited scale at which these surveys have
been conducted means they are unlikely to capture the full het-
erogeneity of city landscapes (including urban and peri-urban
areas). Extending such fine-scale surveys to a citywide scale is
often logistically infeasible. Conversely, data from alternative
survey strategies based on opportunistic community or citizen
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science approaches (Bayne et al., 2012; Rebolo-Ifrán et al., 2019)
are often difficult to quantitatively analyze owing to the lack
of true absence data. Consequently, how bird–building colli-
sion risk varies across geographical space at local, regional, and
global scales remains poorly understood.

One useful analytical approach that has largely been over-
looked in the context of bird–building collisions is maximum
entropy modeling, specifically Maxent (Phillips et al., 2006),
which compares values of environmental predictor variables at
locations of verified records against values of the same vari-
ables at random points in the study area (where the taxon
has not been observed, but could have accessed). Although
Maxent is more often used for modeling the distributions of
living organisms, it is conceptually equivalent to apply Max-
ent to modeling the distribution of bird–building mortalities
because the risk of bird–building collisions can be similarly
described as a stochastic Poisson phenomenon with a proba-
bility density dependent on environmental covariates that are
inferred to have a causal relationship with mortality occurrences
(Elith et al., 2010). The ability of Maxent to model species
distributions based on presence-only occurrences makes this
method particularly suitable for analyzing unstructured com-
munity science data as long as sampling bias is accounted
for. Maximum entropy modeling and other species distribu-
tion modeling-adjacent techniques have already been applied
to examine other causes of mortality in birds, including from
vehicle traffic (Gomes et al., 2008), power lines, and wind tur-
bines (Smeraldo et al., 2020), based on community science
data.

The city-state of Singapore is particularly interesting in this
regard because it has a well-documented incidence of bird–
building collisions (Low et al., 2017; Tan et al., 2017), likely
owing to its high level of urbanization and landscape hetero-
geneity (Gaw et al., 2019). Even so, little is known about the
drivers of the spatial pattern of bird–building collisions in Singa-
pore. Community science observations have identified resident
and migratory bird species that may be particularly suscepti-
ble to building collision mortalities, for example, pink-necked
green pigeon (Treron vernans) and blue-winged pitta (Pitta moluc-

censis), but it remains unclear whether the drivers of collisions in
Singapore differ among species (Elmore et al., 2020; Tan et al.,
2017).

We addressed the gaps and methodological challenges in our
understanding of bird–building collisions by analyzing a mul-
tiyear community science data set of bird–building collisions
from Singapore with a novel application of maximum entropy
models. We projected the Maxent models onto future condi-
tions based on future land-use plans and predicted how collision
risks in Singapore may change over the next 10–15 years.
In so doing, we sought to demonstrate how Maxent-based
analyses can be a powerful tool for modeling bird–building
collision risks and can be used to inform urban planning and
conservation.

METHODS

Study area, design, and community science
records

This study was conducted in the island nation of Singapore
(1.1◦–1.4◦N and 103.6◦–104.1◦E; ∼725 km2) located in the
Sundaland biodiversity hotspot and along the East Asian–
Australasian Flyway (Figure 1). We documented bird–building
collision records in Singapore from 2013 to 2020 with an estab-
lished community science approach, in which members of the
public were encouraged to report sightings of dead birds to
a public hotline as well as via social media (Low et al., 2017).
We identified all reported sightings to species based on photo-
graphic documentation or, where possible, collected specimens
and georeferenced all bird mortality reports where possible
based on GPS coordinates obtained from Google Maps. We
assessed the likely cause of injury or death based on several
lines of evidence as described in Tan et al. (2017). Specifically,
birds found at the base of buildings with signs of facial injury
or head trauma were classified as building collision victims.
We documented other forms of mortality, and birds with an
unidentifiable cause of death were listed as unknown (Tan et al.,
2017). Based on the bird–building collision records collected,
we collated a database of confirmed bird–building collision
records for which locality data were available and classified each
record based on the species’ migratory status, excluding intro-
duced species and species with indeterminate migratory status
(Appendix S1).

Finally, we spatially thinned occurrences to a single record
per taxon per 100 × 100-m pixel. Thinning records helps ame-
liorate the effects of uneven sampling and is a regular step in
data processing for Maxent modeling (Aiello-Lammens et al.,
2015). In the context of avian building collisions, although the
density and frequency of collision records could be informative
regarding the underlying drivers of bird–building collisions, we
nonetheless applied spatial thinning to prevent a few extremely
well-sampled pixels from dominating the pattern, given the
uneven and incomplete sampling of community scientists. Addi-
tionally, this type of Maxent modeling (see “Model generation”
below) can only accommodate presence or background loca-
tions. With increased sampling completeness, future work ought
to be able to incorporate collision density information to
disentangle collision drivers more robustly.

We modeled responses of specific avian taxa by pooling phy-
logenetically similar species into taxonomic bins to increase
sample sizes and prepared subsets of the full collision data set
for taxa with at least 10 confirmed collision records. These
taxon bins included migratory taxa, such as pittas (genus Pitta),
bitterns (genus Ixobrychus), Ficedula flycatchers (genus Ficedula),
and the black-backed kingfisher (Ceyx erithacus), and nonmigra-
tory taxa, such as green pigeons (genus Treron) and the Asian
emerald dove (Chalcophaps indica). We also prepared a separate
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FIGURE 1 Map of bird–building collision localities in Singapore and Singapore’s location relative to South and Southeast Asia, the Sundaland biodiversity
hotspot, and the East Asian–Australasian Flyway (inset).

subset of collision records for all migrants and all residents
(Table 1).

Abiotic environmental predictors

We built raster layers based on the spatial urban environment
by downloading building polygons from the OpenStreetMap
database (number of buildings 104,393) to model the effect
of building size and density on bird–building collisions. Open-
StreetMap contains a near-complete set of building polygons
for Singapore (Biljecki, 2020) in shapefile format. We com-
bined buildings with shared edges via the dissolve and multipart
to singleparts functions in QGIS 3.14.16 because birds are
unlikely to perceive subdivided buildings as separate entities.
From the simplified building data set (number of buildings
72,448), we generated a 100 × 100-m rectangular pixel grid
over the map extent and used the join attributes by location
function in QGIS to extract building attribute summaries. To
calculate per-pixel building perimeter, we used the polygons to
lines function in QGIS to convert the building polygon data
set into a series of lines and calculated the total line length
contained in each 100 × 100-m pixel. We estimated mean build-
ing size per pixel by calculating the combined 2-dimensional
floor area of all buildings intersecting each pixel divided by the
number of buildings intersecting the pixel (details in Appendix
S2). We estimated per-pixel building density by calculating the
2-dimensional area in the pixel covered by buildings for each
pixel (Appendix S2). To generate a raster of building heights,
we manually annotated building polygons from the full Open-

StreetMap data set with building height data from Biljecki (2020)
and OneMap 3.0 (https://www.onemap3d.gov.sg/main/, Sin-
gapore Land Authority), excluding sensitive structures such
as government buildings and military installations. We subse-
quently coarsened the data set by applying a 100 × 100-m
rectangular pixel grid over the map extent and used the join
attribute by location function in QGIS to calculate per-pixel
mean building heights.

We quantified effects of nighttime light pollution by down-
loading a true color night photograph of Singapore taken with
a Nikon D4 with a 400-mm telephoto lens on 17 March 2016
by astronaut Tim Kopra from the International Space Sta-
tion (NASA, 2016). We georeferenced the image in QGIS
and decomposed the image into its red, blue, and green color
channels. Because digital camera sensors convert incident light
intensity into pixel values in the output image, the resultant
red, blue, and green rasters reflect the intensity distribution of
the respective light spectra across the nighttime urban land-
scape. We resampled all nighttime light pollution rasters with
the r.resamp.interp() function in GRASS to a 100-m resolution
with a bilinear interpolation.

Biotic environmental predictors

To generate rasters of vegetation density, we calculated the nor-
malized difference vegetation index (NDVI) from a cloud-free
multispectral image of Singapore captured by the LandSat8
OLI/TIRS platform (USGS). We applied the proximity (raster
distance) function in QGIS to a rasterized map of Singapore’s
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FIGURE 2 Avian taxon-specific collision risk response curves for 8 fine-scale ecogeographic variables: (a) forest proximity, (b) normalized difference
vegetation index (NDVI), (c) nocturnal blue light pollution, (d) nocturnal red light pollution, (e) mean per-pixel building size, (f) total per-pixel building density (i.e.,
the area of a 100 × 100-m pixel occupied by buildings; an estimator of building density), (g) mean per-pixel building height, and (h) total per-pixel building perimeter
(line thickness: relative contribution of the variable to the respective taxon-specific model).

forest cover in 2013 (Tan et al., 2018) to generate a forest
proximity raster. These rasters were subsequently resampled
to 100-m resolution with the GRASS GIS r.resamp.interp()
function with a bilinear interpolation.

All predictor variable rasters and input shapefiles gener-
ated were reprojected to the SVY21/Singapore TM projection
(EPSG:3414). A complete list of predictor variables is in Table 1
and Figure 2.

Calculating coarse-scale landscape effects

To investigate how collision risk varies with spatial scale, we
generated coarsened versions of our predictor variable data set
with the GRASS GIS r.neighbors() function, which resamples
pixel values in a 500-m circular neighborhood. We gener-
ated coarsened focal rasters for all predictor variables except
forest proximity, which allowed us to test the sensitivity of
bird–building collisions at different spatial scales.

Creating future land-use change realization
scenarios

To model how the distributions of bird–building collisions are
expected to shift with land-use change, we generated a set of
future land-use scenarios based on the 2019 Singapore Mas-
ter Plan (Urban Redevelopment Authority, 2019), which maps

out land-use strategies in Singapore for the next 10–15 years.
We generated a simplified list of 11 land-use types based on
the 2019 Master Plan (Appendix S3) and identified a subset
of baseline polygons corresponding to areas where land-use
change was not planned and a separate subset of polygons cor-
responding to areas earmarked for land-use change. We used
QGIS to extract baseline values for each predictor variable
and land-use type combination and the function fitdist() in
the R package fitdistrplus (Delignette-Muller & Dutang, 2015)
to fit a gamma distribution for each combination of land-
use type and predictor variable with the maximum likelihood
estimator method (Appendix S3). We used the gamma distri-
bution because the predictor variables generally exhibit positive
skewed distributions. With parameters obtained from the fit-
ted gamma distributions, we used the create random raster
layer (gamma distribution) function in QGIS to generate a
random raster for each combination of predictor variable and
land-use type (Appendix S3), clipped to the predicted land-use
extent based on the 2019 Singapore Master Plan, for 5 inde-
pendent replicates. For predictor variables with negative (e.g.,
NDVI) or very high pixel values (e.g., mean building size), we
applied a transformation to the baseline raster values to facilitate
gamma distribution fitting (Appendix S3) and subsequently cor-
rected the transformation in the randomized predicted land-use
rasters. We generated an overall land-use change raster for each
independent replicate by using the r.series() function in GRASS
GIS, which combines the predicted rasters for each land-use cat-
egory into a single output raster and averages the pixel value
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for overlapping pixels with multiple land-use types. We used the
raster calculator in QGIS to mask pixels in the original pre-
dictor variable rasters that intersect with the land-use change
rasters and overlaid the land-use change rasters over the original
predictor variable rasters.

Singapore is transitioning from high-pressure sodium vapor
streetlamps (which emit red-orange light) to LED streetlights
(which emit white light) (Land Transport Authority, 2017). We
accounted for this transition by extracting present-day street-
light pollution values from the red-light pollution raster with a
shapefile of Singapore’s road network and adding varying pro-
portions of present-day red-wavelength streetlight pixel values
to the blue light pollution raster. This is based on the assump-
tion that future LED streetlights will be maintained at a similar
level of brightness as present-day sodium vapor streetlamps. We
modeled 5 future blue light pollution scenarios ranging from
20% to 100% of present-day red light pollution levels (in incre-
ments of 20%) and generated 5 randomized future blue light
pollution rasters per scenario based on the methods described
above.

Predictor variable processing

To test for predictor variable collinearity, we used the r.covar()
GRASS GIS function to calculate a covariance matrix for
all possible pairwise comparisons of predictor variables and
excluded the total building size, green light pollution, coarse-
scale green light pollution, and coarse-scale mean building size
predictors due to their high correlations with other predictor
variables (R > 0.8) (Appendix S4). We masked predictor vari-
able rasters to exclude areas where collision detection rates were
likely to be anomalously low due to inaccessibility by community
scientists, including military areas, nature reserves, high-security
industrial zones, and airports (Appendix S5). Masking yielded a
final tally of 26,821 random background points.

We used all available background points in our models
because birds are highly dispersive and thus capable of occu-
pying all available points. We avoided using a bias file to select
background points because of the opportunistic nature of our
community science data. Although a bias file could be used in
Maxent to account for spatially uneven detection rates, there
are multiple processes that positively and negatively influence
whether community scientists detect bird carcasses. For exam-
ple, high human foot traffic (e.g., in the Central Business
District) and high reporting rates (e.g., on university campuses)
could lead to a positive detection bias. However, high car-
cass removal rates by cleaners and pest control (Tan et al.,
2017), especially in areas of high human traffic, and scavenging
(e.g., by monitor lizards) are likely to decouple the relationship
between observer density and positive detection bias. These
spatially varying mechanisms are difficult to quantify robustly.
Therefore, aside from spatial thinning to counter the effect of
localized high reporting rates and masking areas with extremely
low detection rates, we wanted to remain agnostic about how
background points were weighted.

Model generation

We generated maximum entropy (Maxent v3.4.1; Phillips et al.,
2017) models with a method based on the dismo 1.3-5 and
kuenm 0.1.1 R packages (Cobos et al., 2019; Hijmans et al.,
2015), as described in Freymueller (2020). We ran Maxent
models with Q and LQP feature class combinations and regu-
larization multiplier (β) values at 0.025, 0.05, 0.1, 0.25, 0.5, 0.75,
and 1–5 (in breaks of 0.5) levels. To assess model fit, we used the
small sample size-adjusted Akaike information criterion metric
(AICc) (sensu Warren & Seifert, 2011) and selected models with
the lowest AICc values (ΔAICcminimum < 2) and were markedly
more likely than a null model (ΔAICcnull value >2). We applied
this approach to ensure that our models were not unnecessarily
complex or overfit, especially because some taxa had low sample
sizes. After identifying the most likely models for each species,
we visually inspected the response curves to ensure that they
displayed ecologically plausible (i.e., not-concave-up) behavior.
Per niche theory (Grinnell, 1917; Hutchinson, 1957), concave-
up behavior of response curves is unlikely because if a species is
found at both extremes of an environmental gradient, it should
also be found at intermediate conditions. Models that displayed
concave-up response curves were re-run after excluding prob-
lem variables from analysis. Whenever multiple models emerged
with high support (ΔAICcminimum < 2), we compared them with
5-fold cross-validation and selected the model that had lower
intramodel variability. We similarly performed cross-validation
on models that emerged as the sole best-supported model to
ensure they were not sensitive to slight changes in input data,
which would suggest that they were overfit and not informative
for model projection to new environmental conditions (Peter-
son & Samy, 2016). Following cross-validation, we generated
weighted averages of all 5-folds into an ensemble model for
each species. Weights were determined by multiplying testing
sensitivity (given a training threshold of lowest presence [sensu
Pearson et al., 2006]) by the partial area under the receiver oper-
ating characteristic curve (partialROC) at a defined omission of
0.01 across 500 iterations (Peterson et al., 2008). Testing sensi-
tivity was appropriate to include as part of the model weights
because it exists independent of any absence or fractional pre-
dicted area metric. We calculated partialROC metrics with the
kuenm R package (Cobos et al., 2019); partialROC is more
appropriate than traditional ROC-AUC-based metrics for cor-
relative Maxent modeling given the lack of true absence data
(Cobos et al., 2019; Peterson et al., 2008).

We ran Maxent models for 6 avian taxa (pittas (Pitta sp.),
bitterns (Ixobrychus sp.), Ficedula flycatchers, black-backed king-
fisher (Ceyx erithaca), green pigeons (Treron sp.), and Asian
Emerald Dove [Chalcophaps indica]) and 4 additional models con-
taining all migratory birds, all migratory birds excluding pittas,
bitterns, and Ficedula flycatchers, all nonmigratory birds, and all
nonmigratory birds excluding green pigeons and emerald doves
(Table 1; Appendix S5). For all taxa, we ran one set of mod-
els with the fine-scale predictor variables (100-m resolution)
and the other with the landscape-scale predictors (500-m res-
olution). We excluded Asian glossy starlings (Aplonis panayensis)
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CONSERVATION BIOLOGY 7 of 15

FIGURE 3 Relationship between relative collision risk and 8 ecogeographic variables for resident and migratory birds at different spatial scales (line thickness:
relative contribution of the variable to the respective model).

from this analysis due to the relatively small number of occur-
rence records (n = 6) following spatial thinning. We projected
the best models from the 100-m-resolution data set onto the
full unmasked set of predictor variable rasters and plotted col-
lision risk maps with the ggplot2 R package (Wickham, 2016)
(Figure 3; Appendices S5A & S5C).

To assess if the patterns in our mortality models are not just
driven by the distribution of living birds in Singapore, we down-
loaded modern occurrence records of living individuals from
iNaturalist and eBird (Sullivan et al., 2009) on 14 October 2023
for 5 genera: Chalcophaps, Ficedula, Ixobrychus, Pitta, and Treron.
We processed living records similarly to our collision records
(including spatial thinning), constructed models in the same
manner as our models on dead individuals, and compared suit-
ability maps between these models and our models based on
collision records. If collision drivers are nonrandom, the envi-
ronments dead individuals are detected in should only be a
partial subset of the environments living individuals are found in
and should be more influenced by anthropogenic patterns (e.g.,
environments with less greenery, increased light pollution, and
more buildings).

We generated future collision risk maps for each taxon by
projecting the best model for each taxon onto all 5 predictor
variable replicates for each of the 5 blue light pollution scenar-
ios, for a total of 25 future collision risk maps. We generated a
final forecast map for each taxon and blue light pollution sce-
nario by averaging over the 5 replicates and plotted the maps
with ggplot2 (Figures 5 & 6; Appendices S6 & S7). We ensured
that these future projections were limited to areas with posi-
tive multivariate environmental similarity surface (MESS) (Elith
et al., 2010) values to avoid making predictions in nonanalogous

environmental space, where model transferability may be dimin-
ished (Appendices S9–S16). We calculated MESS values for
each species model based on the final variables in that model,
but all future projected scenarios ended up containing positive
MESS values.

RESULTS

Bird–building collision records

We compiled a total of 224 confirmed bird–building collision
records from 2013 to 2020 (mean of 34.3 detected collisions
per year, range 12–51 observations annually), of which 114 were
migrants and 105 were residents (Figure 1). Of the migrants
recorded, 63.4% of collisions were composed of only 8 species
(24% of total species richness), with 35 records (30.4%) for Pitta

(P. moluccensis [27] and P. sordida [8]), 16 (13.9%) for Ficedula (F.

zanthopygia [15] and F. mugimaki [1]), 11 (9.57%) for Ixobrychus (I.
flavicollis [5], I. cinnamomeus [5], and I. sinensis [1]), and 11 (9.57%)
for black-backed kingfisher. As for resident species, collision
mortalities were dominated by pigeons (47.6%): 33 pink-necked
green pigeon, 2 thick-billed green pigeon (Treron curvirostra), and
15 Asian emerald dove records.

Maxent model outputs

The variable coefficients and response curves of our Maxent
models indicated that for each taxon group, collision risk was
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8 of 15 Tan ET AL.

FIGURE 4 Bird–building collision risk maps for the 5 taxa that collide most frequently with buildings in Singapore based on fine-scale predictor variables: (a)
green pigeons (Treron sp.), (b) Asian emerald dove (Chalcophaps indica), (c) bitterns (Ixobrychus sp.), (d) pittas (Pitta sp.), and (e) Ficedula flycatchers (Ficedula sp.). The
collision risk values are relative (i.e., a collision risk of 1 does not equate to a 100% risk of collision).

explained by 2–3 high-contributing variables and that these
high-contributing variables differed among taxa (Figure 2). In
more general terms, our models suggested that forest proximity
(Figures 2a & 3a) may be one of the most important predic-
tors of bird–building collisions in the Southeast Asian tropics,
affecting both resident and migratory taxa. In particular, our
taxon-specific models suggested that low- to medium-rise build-
ings located near forest edge appeared to be collision hotspots
for emerald doves and Ficedula flycatchers (Figure 4b,e). And,
although building size and building perimeter (Figures 2e,h &

3e,h) did to some extent influence bird–building collision risk in
bitterns and emerald doves, their effects were generally weaker
relative to other predictor variables. Similarly, red light pollu-
tion (Figures 2d & 3d) appeared to have a considerably weaker
effect on collision risk compared to blue light pollution. We did
not observe any strong species-specific effect of vegetation den-
sity on collision risk and only observed a correlation between
NDVI and collision risk in analyses broadly merging across mul-
tiple migratory species and, at landscape scales, nonmigrants
(Figures 2b & 3b; Appendix S6).
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CONSERVATION BIOLOGY 9 of 15

Across all migrants, the best-performing model indicated that
building density was the strongest predictor of building col-
lisions (38.5%), followed by blue light pollution (22.1%) and
vegetation density (16.7%) at the fine scale (Table 1; Figure 3).
The same variables were also identified in the landscape-scale
model, although blue light pollution was the strongest predictor
(34.8%), followed by vegetation density (30.3%) and building
density (17.6%) (Appendix S6; Figure 3). For pittas in particular,
high blue light pollution was the strongest predictor of collision
at fine and landscape scales (82.4% and 78.2%, respectively)
(Table 1; Appendix S6). For bitterns, high building density
and building size were the main predictors of collisions, with
fine-scale building density and building size explaining 76.6%
(Figure 2f) and 20.2% (Figure 2e) of the best model, respec-
tively (Table 1), whereas at landscape scales, the best model did
not emerge as more likely than the null model (Appendix S6).
Unlike for other migratory taxa, the best-performing model for
Ficedula flycatcher collision risk encompassed forest proximity
and low building height (43% and 49.9%, respectively) (Table 1).
There was no clear pattern at coarser spatial scales (Appendix
S6). We were unable to obtain any useful explanatory mod-
els for black-backed kingfishers, likely due to small sample size
(n = 11). Excluding pittas, bitterns, and Ficedula flycatchers, col-
lision risk for remaining migratory species was driven mainly
by forest proximity (39.9% fine scale, 16.7% landscape scale),
NDVI (33.6% fine scale, 44.0% landscape scale), and building
density (21.8% fine scale, 18.7% landscape scale) at the fine and
landscape scales (Table 1; Appendix S6).

Across resident species, the best-performing model at the
fine scale identified forest proximity as the strongest predic-
tor of bird–building collisions (80.8%); all other predictors had
<10% contribution (Figure 3). At the landscape scale, forest
proximity equally emerged as the best predictor of collision risk
(59.5%) across resident birds, although NDVI also appeared
to be a strong predictor (25.6%) (Figure 3). Both the best-
performing fine- and landscape-scale models for Treron green
pigeons identified forest proximity as the strongest predictor
of building collisions (99.7% and 96.5% variable contribution,
respectively) (Table 1; Appendix S6). Similarly, Asian emer-
ald dove collisions were strongly linked to forest proximity
at the fine and landscape scales (48.5% and 51.5% variable
contribution, respectively) (Table 1; Appendix S6). The fine-
scale model also identified low building height as a predictor
(45.3%), and the landscape-scale model identified building den-
sity (43.9%) as a predictor. Excluding the green pigeons and
emerald doves, collision models for the remaining resident
species identified forest proximity as the strongest predictor at
the fine and landscape scales (96.6% and 43.6%, respectively),
whereas NDVI was also identified as a strong predictor in
the landscape-scale model (29.1%). The second-best fine-scale
model (ΔAICc = 0.234) and the best-fit landscape-scale models
both identified blue light pollution as a weak but not insignifi-
cant collision predictor (22.1% and 10.3%, respectively), which
suggests that blue light pollution may also be associated with
collisions in some resident species as well.

Plotting the predicted collision distribution rasters for each
taxon highlighted striking differences in the expected collision

landscapes (Figure 4). Although the overall landscape-wide col-
lision risk was high across all modeled taxa, for pittas and
bitterns, collision hotspots appeared concentrated around the
Central Business District and Downtown Commercial District,
where building density and blue light pollution levels are high
(Figure 4c,d). However, the bitterns also show elevated colli-
sion risk in industrial areas in the West. In contrast, the Ficedula

flycatchers, pink-necked green pigeon, and Asian emerald dove
were more likely to collide with buildings in areas close to forest
cover, such as in areas fringing the central and southern forests
(Figure 4a,b,e).

Comparison with living birds

Our living and dead bird models showed some similarities, but
projections from models based on building-collision records
were more associated with urban environments than projections
from models based on living birds (Appendices S10–S14). This
demonstrated that our bird–building collisions were not just a
random sample of living bird distributions in Singapore. Colli-
sions occurred in more built-up areas with lower NDVI values
and higher light pollution (especially blue spectra) and that were
farther away from forests relative to observations of live birds.
Pittas exhibited the highest similarity between living and dead
models (Appendix S13), but there was a strong difference in the
areas of highest occurrence likelihood between the living and
dead models for pittas, suggesting that the pitta mortality drivers
are likely to differ from the drivers of live pitta occurrence.

Future collision landscapes

We found that future urban developments were likely to pose
additional collision risks to birds strongly affected by forest
proximity, owing to the encroachment of these developments
into the edges of forested areas (Figure 5). In particular, new
large-scale residential developments (zones 1–4 in Figure 5;
Appendix S8) were predicted to be high-collision-risk zones
for green pigeons, emerald doves, and Ficedula flycatchers due
to their proximity to the central, western, and southern for-
est fragments. The incorporation of forest into new residential
developments was predicted to contribute to higher collision
rates as well. Our forecast models also showed that the pro-
posed industrial development in Pasir Ris (zone 6 in Figure 5) is
likely to be a collision risk zone for bitterns due to the projected
high building density of this area. More importantly, an increase
in blue light pollution was predicted to dramatically increase
the landscape-wide collision risk for pittas, which constitute the
largest proportion of collision records in the data set. Specifi-
cally, scenarios with blue light pollution levels exceeding 40% of
present-day streetlight intensity were projected to increase the
mean landscape-wide collision risk for pittas by at least 10.1%
(Figure 6; Appendix S16).

As for the suitability of our model projections, our MESS
analyses resulted in positive values, indicating our projections
did not require extrapolation beyond the parameter limits of the
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10 of 15 Tan ET AL.

FIGURE 5 Projected future fine-scale bird–building collision risk maps for (a) green pigeons (Treron sp.), (b) Asian emerald dove (Chalcophaps indica), (c)
bitterns (Ixobrychus sp.), and (d) Ficedula flycatchers (Ficedula sp.) based on the Singapore Master Plan 2019 (numbers, planning zones; zone 6, industrial). See
Appendix S8 for a detailed breakdown of projected future developments.

training data set (Appendices S17–S24). However, some areas,
such as the Central Business District, contained relatively lower
MESS values in model projections, especially for models that
incorporated blue light pollution as a predictor variable. This
is because the Central Business District already contained rela-
tively high levels of blue light pollution. The relative effect of
these deviations likely did not affect our projections because
the Central Business District was small relative to the overall
projected area.

DISCUSSION

Suitability of maxent for modeling
bird–building collisions

In addition to being the first multivariate analysis of bird–
building collisions from Asia, our study is also one of the first
to model the drivers of bird–building collisions at a landscape
scale. Our results demonstrated that Maxent can produce robust
model outputs with biologically meaningful inferences that pro-

vide baseline assessments of the collision risk landscape, all
while leveraging opportunistically sampled community science
data. Our ability to differentiate between the distributions of
living and dead birds in Singapore at this spatial scale suggests
our results were not a function of biases related to the underly-
ing environmental data, which is a concern with this modeling
approach (Warren et al., 2021). Collision risk maps, such as
ours (Figures 4–6), can be used to prioritize high-collision-risk
areas for targeted mitigation efforts. Furthermore, the ability to
project models onto future development scenarios makes this
tool potentially useful for urban planners and policymakers to
facilitate the incorporation of preemptive collision mitigation
measures into development plans.

Drivers of bird–building collisions

Similar to studies from North America (Elmore et al., 2020;
Loss et al., 2019), we found that the main drivers of bird–
building collisions varied among taxa. In contrast to those
studies, however, building size was a relatively poor predictor of
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CONSERVATION BIOLOGY 11 of 15

FIGURE 6 Forecast collision risk maps for the pittas (Pitta sp.) for 5 projected fine-scale scenarios of future nocturnal blue light pollution resulting from
Singapore’s transition to white LED streetlights from red-orange sodium vapor lamps. These scenarios correspond to (a) 0% (i.e., modern-day), (b) 20%, (c) 40%,
(d) 60%, (e) 80%, and (f) 100% increases in blue light output relative to present-day levels of red streetlight pollution and suggest that a >40% increase in blue light
pollution is likely to lead to major increases in landscape-wide relative collision risk.
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12 of 15 Tan ET AL.

bird–building collisions; instead, building density (i.e., the over-
all space occupied by buildings per pixel), blue light pollution,
forest proximity, and building height were better predictors of
collision risk. It is unclear why building size emerged as a rel-
atively good predictor in other studies, although it is possible
that this may be a function of spatial scale. When contrasted
against 100,000 buildings across an entire city, individual large
buildings are less likely to be major obstacles to bird movement
relative to dense clusters of buildings. Similarly, at very fine spa-
tial scales, such as university campuses and city centers, where
building densities are relatively high and homogeneous, the rel-
ative effect of individual large buildings should be comparatively
stronger.

Increased blue light pollution and pitta collision
risk

One of the more surprising results of this study was that blue
light pollution was significantly associated with building colli-
sions in pittas. Although the association between light pollution
and increased collision risk is well-documented (Lao et al., 2020;
Van Doren et al., 2021), relatively few studies have explored the
impact of different light spectra (see Evans et al. [2007] and
Poot et al. [2008] for exceptions). Although pittas are strongly
attracted to bright lights during migration, as evidenced by
historical records of high capture rates at One Fathom Bank
lighthouse in the Straits of Malacca (Robinson & Boden Kloss,
1922) and at the spotlit MAPS banding station at Fraser’s Hill,
Malaysia (Wells, 1992), no specific attraction to blue light has
been documented in this taxon to date. Our finding that blue,
but not red, light pollution was associated with increased colli-
sion risk in at least one group of migratory birds in Singapore
echoes a recent study by Zhao et al. (2020). They reported ele-
vated catch rates of migratory birds at mist nets illuminated by
blue light at night in Yunnan, China and suggested that future
studies need to account for the differential effects of light color
temperature on nocturnal migrants. However, our results also
showed that this effect was not universal to all migratory species
and suggested that migratory phototaxis toward particular light
wavelengths may be a taxon-specific phenomenon. The strong
effect of blue light pollution identified in the all-migrants model
was likely driven solely by the abundance of pittas in the col-
lision data set, and few other migratory birds in our data set
exhibited strong attraction to light pollution at the scale of our
analysis.

Regardless, our finding that pittas appeared acutely sensitive
to blue light pollution is particularly concerning given recent
changes to Singapore’s light pollution profile. Although the bulk
of blue light pollution in Singapore was restricted to down-
town areas and shopping districts during our study period, since
2022 the Singapore government has replaced most of the coun-
try’s sodium-vapor streetlights (which emit orange-red light)
with LEDs (Abdullah, 2017), which has dramatically increased
island-wide levels of blue light pollution. Our forecasting anal-
yses indicated that increases in streetlamp-induced blue light
pollution levels ≥40% of present-day red-light levels would

likely to lead to significant increases in island-wide collision risk
for migratory pittas (Figure 6).

A concerted effort by conservationists is thus needed to
assess and reduce the potential impacts of the LED transition
on migratory birds, not only in Singapore, but also in other
cities located along migratory pathways. The LED transition
underway in many developed countries is part of global efforts
to reduce energy consumption and address climate change and
is unlikely to be abandoned because of its impact on migrant
birds. As such, solutions aimed at mitigating the negative effects
of blue light on migratory birds could focus on attenuating
the amount of blue light emitted by LED lights and other
light sources during peak migratory months, such as by perma-
nently or temporarily deploying LED streetlights with a lower
color temperature (∼2700–3000 K) that emit warmer, more
red-shifted light, instead of LEDs that have a higher color tem-
perature (∼4000–5000 K) and emit cooler light with a higher
blue fraction. Other solutions may be architectural or design
related in nature, such as addressing the way light is direction-
ally shielded, thereby minimizing the exposure of blue light
to overflying birds. Further research is needed into the phys-
iological effects of blue light on night-migrating birds and
whether these effects are uniform across migratory avian taxa,
especially because attraction to light pollution did not appear
to be exhibited by any other migratory species in our data
set.

Forest edges as collision hotspots

Although forest proximity had not been identified previously as
a driver of bird–building collisions, it is likely that the impor-
tance of this predictor is partly explained by higher densities of
forest-dwelling species near forest edges relative to elsewhere
in the urban matrix (Brisque et al., 2017; Sabo et al., 2016),
which is known to correlate with increased chances of build-
ing collisions (Hager et al., 2008). At the same time, collision
rates are likely exacerbated by the fact that forest-dwelling fru-
givores, such as green pigeons and emerald doves, are highly
dispersive and move between forest patches to forage (Cros
et al., 2020), thereby encountering buildings near the forest
edge. It is unclear, however, why other edge-dwelling frugiv-
orous species, such as bulbuls or barbets, appeared to be less
affected by bird–building collisions, especially because barbets
are strongly overrepresented in building collision reports in
other East Asian localities, such as Taiwan (Wang Ling-Min &
Hsieh Chih-Heng, personal communication). Forest proximity
also emerged as a driver of collision risk in some migratory taxa,
such as yellow-rumped flycatchers, but not in others, such as
pittas. Yellow-rumped flycatchers migrate during the night and
seek out forest patches similar to their breeding habitat during
the day to forage and rest on migration, putting them at greater
risk of collision with buildings in forest-adjacent areas. Our find-
ing that forest proximity is a strong predictor of collisions in
migratory and nonmigratory taxa suggests that buildings near
forest habitats are hotspots of bird collisions and are therefore
sites most in need of collision mitigation measures.
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Addressing this issue is especially important in the context of
Singapore due to the impending development of new residential
and industrial estates adjacent to and in existing forested areas
(Figure 5; Appendix 7). In particular, efforts by the Singapore
government to retain forest patches in new residential develop-
ments, such as in the Tengah Forest Town (zone 1 in Appendix
S8) (Tan et al., 2021) and Springleaf estate (zone 4 in Appendix
S7) (Ng, 2022), with the intention of preserving biodiversity
and forest connectivity could result in increased collision risks
for resident and migratory birds. Modeling how future land-
use change might affect bird–building collision risks will enable
urban planners and architects to incorporate preemptive miti-
gation measures, such as bird-safe glass, louvers, and mullions,
into building facades at the design phase, as is presently being
explored in Springleaf estate (Ng, 2022), which would likely be
more cost-effective than retrofitting buildings post hoc.

To a lesser extent, we also observed that vegetation density
was broadly correlated with collision risk for migratory and non-
migratory species, especially at coarser spatial scales, although
we did not observe any correlation between vegetation density
and any of the species that collided most often with buildings.
Although vegetation density may play a role in attracting migra-
tory and nonmigratory birds at coarse scales, at finer spatial and
taxonomic scales, vegetation quality likely matters more in deter-
mining the risk of building collisions. Alternatively, our results
could also point to the limitations of the NDVI metric as a mea-
sure of vegetation density. Alternative metrics, such as the leaf
area index (LAI) or enhanced vegetation index (EVI), should be
considered in future work.

Our research highlights how the drivers of bird–building col-
lisions may differ between temperate and tropical latitudes. The
relative abundance of nonmigratory forest-dwelling frugivores,
such as green pigeons and emerald doves, in tropical forests,
combined with the elevated susceptibility of tropical pigeons to
building collisions (Ocampo-Penuela et al., 2016; Santos et al.,
2017), likely contributed to higher rates of nonmigratory bird–
building collisions relative to temperate latitudes and thus the
concomitant importance of forest proximity as a key driver of
collision risk. More importantly, our results add to the long list
of negative impacts of forest fragmentation, since fragmented
forest landscapes are characterized by more edges with high
collision frequencies.

Challenges and opportunities

Despite our data set spanning 7 years, large sample sizes were
difficult to achieve because of the difficulty of diagnosing cause
of death, relatively high carcass disposal rates across Singapore
(Tan et al., 2017), and the highly heterogeneous detection rates
of community scientists. Although Maxent may be a suitable
method for analyzing opportunistically obtained bird–building
collision data, some of our models performed poorly (e.g.,
black-backed kingfisher), likely pointing to the effect of small
sample sizes. Combining community science with more system-
atic survey efforts may help address the sample size limitation
as long as differences in survey effort are accounted for.

Our models benefited from the availability of highly detailed,
fine- and landscape-scale open-source building data and land-
use forecasts, which may be unavailable in many other countries.
In the future, other predictor variables that are strongly associ-
ated with bird–building collisions, such as façade glass cover and
amount of light reflected off glass façades, could be included in
similar research (Hager et al., 2017; Lao et al., 2020). At present,
these variables are challenging to quantify at the citywide scale.
Future analyses should be able to address this limitation by
combining emerging citywide 3-dimensional photogrammetric
models with machine learning and computer vision methods
to estimate fine-scale urban characteristics, such as glass area
across entire cities.

Generating environmental predictor layers can also be chal-
lenging and time consuming. For example, generating the raster
for building height in this study entailed manually annotating
height data from individual buildings in the OneMap3D portal
onto our shapefile of building polygons, which required approx-
imately 2 months of continuous work to complete. With new
computational methods, incorporation of such data should be
more straightforward in the future.

The analytical approach we used can serve as a blueprint
for more rigorous and applied analyses of bird–building colli-
sions in cities worldwide. And, we hope that such analyses can
subsequently be translated into policies aimed at reducing the
incidence of bird–building collisions in urban areas.
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