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1  | INTRODUC TION

Landscape genetics has become a hot topic in the current era of next-gen-
eration sequencing (Richardson, Brady, Wang, & Spear, 2016; Storfer, 
Patton, & Fraik, 2018). Understanding the association between land-
scape or other geographical features and population genetic patterns 
is important for revealing the evolutionary history of species (Palsbøll, 
1999) as well as informing their management (Dudaniec et al., 2013). 
Many computer programs have been developed to analyse these asso-
ciations after the concept of landscape genetics was developed about 
15 years ago (Manel & Holderegger, 2013; Manel, Schwartz, Luikart, & 
Taberlet, 2003; Storfer, Murphy, Spear, Holderegger, & Waits, 2010).

For examining evolutionary histories in particular, there are many 
widely used programs designed to estimate the spatial relationship 

among populations (e.g., spacemix [Bradburd, Ralph, & Coop, 2016]), 
spatial sub-structuring within populations (e.g., structure [Pritchard, 
Stephens, & Donnelly, 2000] and geneland [Guillot, Mortier, & Estoup, 
2005]), and historical migration events among populations (e.g., 
eems [Petkova, Novembre, & Stephens, 2016). A common feature 
of all these programs is that they use Bayesian algorithms in recon-
structing the ancestral status of species populations, which typi-
cally follow the island population model (Latter, 1973) that assumes 
Hardy–Weinberg equilibrium within populations (Saenz-Agudelo, 
Jones, Thorrold, & Planes, 2009), with less consideration of genetic 
exchange events among populations. Such Bayesian programs are 
capable of detecting population genetic patterns from the recon-
structed ancestral status of populations, which reflect the results 
of long-term evolution. However, the programs are not well suited 
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for application to a single population or geographically continuous 
populations with high connectivity (Lowe & Allendorf, 2010; Manel, 
Gaggiotti, & Waples, 2005; Petkova et al., 2016). Another disadvan-
tage of the programs is that most of them are computationally inten-
sive. Therefore, using Bayesian landscape genetic programs to study 
population genetic patterns and management situations associated 
with ongoing dispersal over relatively small spatial extents, for ex-
ample across a city or a nature reserve, is not practical.

To cope with some of these management issues, over the last 
decade researchers have started to develop non-Bayesian programs. 
These programs can be classified into two types, one that requires 
prior knowledge of environmental features and another one that 
does not:

1.	 The programs requiring prior knowledge on environmental 
features (e.g., circuitscape [McRae & Shah, 2009], Resistancega 
[Peterman, 2014] and sdmtoolbox [Brown, 2014]) normally ask 
users to input raster layers indicating certain landscape classes 
or other environmental features. It is possible to input multiple 
raster layers into some of these programs, which could then 
be used to define continuous resistance surfaces based on 
expert decision or an optimization process (Spear, Balkenhol, 
Fortin, McRae, & Scribner, 2010). This can help prevent subtle 
fine-scale spatial variation in resistance values being overlooked. 
The programs generally assume that different landscape classes, 
or landscape classes combined with other environmental fea-
tures (Spear et al., 2010), are correlated with resistance and 
generally calculate the correlation coefficients using genetic 
algorithms derived from circuit theory (McRae, 2006; McRae 
& Beier, 2007). These programs can be quite informative for 
management by providing resistance values over the entire 
targeted area. However, the accuracy of the programs can be 
highly dependent on the resolution and the comprehensive-
ness of the collected environmental data. In addition, assigning 
fixed resistance values to a particular environmental feature, 
or combination of environmental features, may overlook the 
contribution of nonenvironmental factors to dispersal (for ex-
ample genetic drift), especially when environmental features 
only explain a minor proportion of spatial genetic divergence 
(Wang, Glor, & Losos, 2013).

2.	 The non-Bayesian programs that do not require prior knowledge 
on environmental features simply map genetic patterns across 
the study area. Although intuitive, there are only a few such pro-
grams available and all of them were published very recently. Un-
PC (House & Hahn, 2018) is an r package that projects principal 
components analysis (PCA)-based genetic distances of pairs of 
populations (the “un-PC” values) as ellipses to highlight areas of 
extreme genetic differentiation and similarity, and therefore areas 
of high and low resistance. Un-PC is model-free in the sense that 
it does not specify a particular mechanistic model underlying the 
observed genetic pattern. However, Un-PC is designed for map-
ping spatial genetic patterns among multiple discrete populations 
because resistance is calculated based on un-PC values that are 

population-based instead of individual-based. Therefore, it is not 
suitable for mapping patterns within a population or amongst 
geographically continuous populations. Another program is mapi 
(Piry et al., 2016), which works similarly to Un-PC and is model-
free in the same sense. However, mapi directly projects ellipses 
representing genetic distances between pairs of individuals, 
which ignores population-level correlations between genetic dis-
tance and environmental features. Moreover, mapi is implemented 
in the open source database postgresql (Momjian, 2001), which re-
quires relatively complicated database installation and configura-
tion (House & Hahn, 2018). In contrast, a third program, DResD, is 
presented in the form of an r script and calculates resistance using 
population-level information (Keis et al., 2013). Specifically, DResD 
first calculates the general trend of isolation by distance (IBD) at a 
population level by fitting an asymptotic curve to data on genetic 
and geographical distance for all sampled pairs of individuals, and 
then calculates the IBD residuals of each pair of individuals (Keis 
et al., 2013). Afterwards, DResD computes the resistance in each 
grid cell as the weighted average of all IBD residuals, with the 
weights being inversely proportional to the geographical distance 
between the centre of the cell and the midpoints of lines con-
necting the corresponding sample pairs over the area considered. 
This method is thus different from directly projecting the IBD re-
siduals for each sample pair, and therefore strongly departs from 
MAPI. However, in DResD, the method of weighting IBD residuals 
could introduce inaccuracies because only the midpoints of the 
lines connecting sample pairs are used in calculating resistance, 
which results in loss of spatial information from all other points in 
the study area that intersect the connecting lines between sample 
pairs. Moreover, this method means that each grid cell will receive 
weighted IBD residuals corresponding to all sample pairs, even 
though most sample pairs may not be relevant to the focal cell. 
For example, if the area in a grid cell contains the midpoint of a 
line with a strongly positive residual, then this could unduly influ-
ence the resistance value of the area in a neighbouring grid cell 
with midpoints that have negative residuals. A minimum distance 
threshold could be set to avoid this problem, but it is unclear how 
to objectively set this threshold. In particular, the method of cal-
culating resistance in DResD may limit its ability to map resistance 
over an area with a mosaic pattern.

Inspired by these pioneer non-Bayesian programs and with 
the motivation of overcoming the limitations identified, we have 
developed a new individual-based, spatially explicit program for 
mapping resistance to ongoing dispersal within a single population 
or amongst geographically continuous populations at relatively 
small spatiotemporal scales—ResDisMapper. More specifically, by 
“scale” here, we mean “extent” and not “resolution." ResDisMapper 
is a non-Bayesian program that is implemented as an r pack-
age. It calculates resistance for a focal cell as the average of the 
IBD residuals corresponding to those lines that connect sample 
pairs and intersect the focal cell. This enables ResDisMapper to 
be used to study population genetic patterns and management 
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situations associated with ongoing dispersal over relatively small 
spatiotemporal scales, in contrast to Bayesian programs. In ad-
dition, ResDisMapper is intuitive, not computationally intensive 
and belongs to the class of non-Bayesian programs that require 
no prior knowledge of environmental features. Within this class 
of non-Bayesian programs, ResDisMapper is similar to DResD 
in that they both calculate IBD residuals in the same way, but 
ResDisMapper differs fundamentally from DResD by using a novel 
method to calculate resistance using the IBD residuals, which 
overcomes the key limitations of DResD identified above.

2  | MATERIAL S AND METHODS

2.1 | Description of the r package

Our program is called ResDisMapper, short for Resistance to 
Dispersal Mapper. ResDisMapper is compiled as an r package al-
lowing for the calculation and visualization of resistance to disper-
sal. The principle behind ResDisMapper is to first calculate the IBD 
residual for each sample pair of individuals, which is the deviation 
from the general IBD trend, and then spatially map resistance cal-
culated using the IBD residuals, to see where extreme residuals 
are accumulated. Positive IBD residuals represent greater genetic 
distances than the general IBD trend and accumulate in cells which 
have a relatively high resistance to dispersal, and vice versa for 
negative IBD residuals. Because the IBD residuals are defined rela-
tive to a general IBD trend at the population level, resistance as 
calculated in ResDisMapper is not an absolute value but rather a 
relative value. For example, in a biological invasion scenario, areas 
with negative resistance values can be interpreted as areas with 
human-facilitated dispersal of an invasive species, whereas in a 
habitat fragmentation scenario, areas with negative resistance 
values can be interpreted as remaining “corridors” of habitat that 
have low resistance to dispersal compared with areas cleared of 
habitat.

ResDisMapper is particularly suited for small spatial scales be-
cause the IBD-based approach to calculating resistance should 
only be applied to a single population or spatially continuous pop-
ulations that correspond to only one IBD trend. Spatially discrete 
populations would probably correspond to multiple IBD trends, 
which would violate the assumption of one IBD trend. In addition, 
ResDisMapper is particularly suited for small temporal scales be-
cause the IBD-based approach to calculating resistance assumes 
that the observed genetic differentiation arises due to geograph-
ically limited dispersal, which occurs over short temporal scales 
at small spatial scales. Thus, the approach is poor at capturing 
genetic differentiation arising from mutation or historical events 
over large temporal scales.

The r package comprises four functions corresponding to mod-
elling IBD (rdm_IBD), calculating IBD residuals (rdm_IBD and rdm_re-
sidual), mapping and validating resistance (rdm_resistance), and 
visualization (rdm_mapper). The r package, example data sets and 

user manual are available on Github (https​://github.com/takfu​ng/
ResDi​sMapper).

2.2 | Description of the workflow

ResDisMapper calculates IBD residuals using individual-based ge-
netic/genotypic differentiation. Running ResDisMapper requires 
genetic and geographical data of samples from a single population 
or a set of geographically continuous populations which display a 
genetic pattern that is near-panmictic or that follows a continu-
ous geographical cline, whereby relatedness between samples is 
largely determined by the physical distance between them. The 
input data for ResDisMapper are two files: a GENEPOP format file 
for genetic/genotypic information of all sampled individuals and a 
tab-delimited table for the geographical coordinates of sampling 
localities. Although designed primarily for single nucleotide poly-
morphism (SNP) and microsatellite data, ResDisMapper can intake 
data from any genetic markers if they are coded into GENEPOP 
format through the function provided in the r package adegenet 
(Jombart, 2008). ResDisMapper allows missing data in the input—
missing data are removed during calculation of the IBD residuals. 
The following are in-depth explanations of the functions in the r 
package.

The function rdm_IBD generates two distance matrices from 
the input genetic/genotypic data and geographical data, respec-
tively. In generating the genetic distance matrix, rdm_IBD adopts 
the algorithms in the r package poppr (Kamvar, Tabima, & Grünwald, 
2014), which provides users with six methods of calculating individ-
ual-based genetic distance: relative similarity, Nei's distance, classi-
cal Euclidean distance, co-ancestry coefficient, angular distance and 
absolute genetic distance.

Because ResDisMapper focuses on relatively small areas where 
the curvature of the Earth's surface can be ignored, the geographi-
cal distance is calculated simply as the Euclidean distance using the 
function dist() in r.

The two matrices are then used to model the IBD trend for the 
entire set of sampled individuals. The function rdm_IBD provides 
two ways to model this IBD trend: (a) the linear model and (b) the 
nonlinear model, where x is geographical distance, y is genetic dis-
tance, and a, b and c are constant parameters:

More specifically, the parameter a represents the intersect 
of the IBD trend with the y-axis, the parameter b represents the 
slope of the IBD trend for the linear model and defines the asymp-
totic value of y for the nonlinear model, and the parameter c in 
the non-linear model represents the rate at which the asymptotic 
value of y is reached as x increases. The values of the three pa-
rameters are determined automatically by the function rdm_IBD 

(1)y=a+b x

(2)y=a+b(1−exp (−exp (c)x))
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by minimizing the sum of squared errors between the fitted model 
and the data points. Afterwards, rdm_IBD calculates the IBD resid-
uals, using either Equation 3 for the linear IBD model or Equation 4 
for the nonlinear IBD model, where ri is the residual for the ith pair 
of sampled individuals and xi and yi are the observed geographi-
cal and genetic distances for the ith pair of sampled individuals, 
respectively:

Finally, rdm_IBD creates a scatter-plot of genetic and geograph-
ical distances for all pairs of sampled individuals and draws the ex-
pected IBD trend through the data space.

The function rdm_residual intakes IBD residuals for each pair of 
sampled individuals (from the output of function rdm_IBD) together 
with their geographical coordinates, and then creates a 3-D graph 
showing the residuals for each pair of sampled individuals, repre-
sented as a line segment over the area considered. In this function, 
users can specify the geographical distance range over which IBD 
residuals are considered when calculating resistance. This is import-
ant because different spatial scales can give substantially different 
patterns (Schregel et al., 2018). The geographical distance range 
can be specified by either (a) using prior knowledge of the typical 
dispersal range of the species under consideration, or (b) testing 
different spatial scales and seeing which scale corresponds to that 
where the genetic correlation between individuals reaches zero 
(Epperson, 2005). Finally, rdm_residual outputs an object of class 
SpatialLinesDataFrame, containing coordinates of the line segments 
joining each pair of sampled individuals and the corresponding IBD 
residuals.

The function rdm_resistance intakes the object of class 
SpatialLinesDataFrame from the output of rdm_residual, projects the 
line segments onto a user-specified 2-D grid, and calculates the resis-
tance and the associated statistics over the grid. Using the function 
rasterize() in the r package raster (Hijmans & van Etten, 2014), rdm_re-
sistance calculates four statistics for each grid cell: (a) the resistance, 
(b) the number of intersecting line segments, (c) statistical certainty 
of the resistance and (d) statistical significance of the resistance. The 
resistance for a grid cell is the mean of the IBD residual values of all 
line segments that intersect the cell and have a length within the us-
er-defined geographical distance range. Positive resistance indicates 
obstruction/deterrence of dispersal through a grid cell due to some 
geographical property, whereas negative resistance indicates facili-
tation of dispersal through it. Figure S1 shows a schematic diagram 
of how resistance values are calculated by ResDisMapper and DResD.

The statistical certainty of a resistance value in a grid cell rep-
resents the certainty of whether the deterrence or facilitation of 
dispersal through a grid cell is actually taking place, given a set 
of IBD residuals corresponding to line segments that intersect 
the cell. This certainty is calculated as the sign of the product of 
the upper and lower limits of the 95% confidence interval of IBD 

residuals for the cell, which accounts for sampling error—if the 
sign is positive, then the upper and lower limits are of the same 
sign, indicating probable deterrence or facilitation of dispersal. 
The upper and lower limits of the 95% confidence interval are cal-
culated using the function CI implemented in the r package Rmisc 
(Hope, 2013). The statistical significance of the resistance value 
of a grid cell indicates the degree to which the value differs from 
those in a null distribution. Specifically, the resistance value for 
a grid cell is calculated as the average of n IBD residuals, corre-
sponding to n lines intersecting the cell. Analogously, a resistance 
value from the null distribution for the cell is calculated by (a) ran-
domly sampling (without replacement) n IBD residuals from the set 
of all IBD residuals corresponding to all lines over the entire area 
considered, and (b) determining the average of the sampled IBD 
residuals. The function rdm_resistance performs steps (a) and (b) 
1,000 times, resulting in 1,000 null values of the resistance values, 
which form the null distribution. The function then compares the 
observed resistance value to the null distribution. If the observed 
resistance of a grid cell is situated above the 95th percentile or 
below the 5th percentile of the null distribution, then the grid cell 
is considered as having a high or low resistance that is statistically 
significant, respectively. There are options within rdm_resistance 
to change the thresholds for determining the statistical certainty 
and statistical significance of resistance values.

After running rdm_resistance, the function will output a data 
frame showing the summary statistics pertaining to resistance for 
each grid cell, as described in the previous paragraph. Users can 
then input the data frame into the function rdm_mapper to visu-
alize the resistance map. There is a parameter specifying whether 
to display all cells (regardless of statistical certainty or not) or only 
cells with statistical certainty. In addition, there is a parameter 
specifying whether to draw contour lines delineating grid cells that 
have resistance values with high statistical significance. A contour 
line is drawn through adjacent grid cells for which resistance val-
ues can be calculated. If a contour line is drawn through a grid cell 
for a second time, then it forms a loop. However, if a contour line 
encounters a grid cell with no data (no intersecting line segments) 
for calculating a resistance value, then the line terminates without 
forming a loop. There are a few other parameters that users can 
change to customize the visualization, for example a parameter that 
specifies the size of the points representing sampling locations.

2.3 | Simulated data set

To demonstrate the utility of ResDisMapper and evaluate its per-
formance, we ran ResDisMapper with both simulated and empiri-
cal data sets. We simulated the genetic dynamics of two species 
of “unicorns” (abstract species) across a gridded area with two 
types of landscape, using simadapt version 1.8.0 (Rebaudo et al., 
2013). In the simulated area, we refer to a grid cell as a “landscape 
cell,” to differentiate this from a grid cell in the gridded area used 
by ResDisMapper to calculate resistance values. simadapt is an 

(3)ri=yi− (a+b xi)

(4)ri=yi− (a+b(1−exp (−exp (c)xi))).
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individual-based genetic model for simulating landscape manage-
ment impacts on populations, and is implemented in netlogo ver-
sion 5.1.0 (Wilensky, 1999).

In the simulations, we set up two types of landscape: an unsuit-
able habitat which we consider to be a barrier to dispersal (with 
parameter values resource  =  1 and barrier  =  100) and a suitable 
habitat (with parameter values resource  =  10 and barrier  =  0). In 
simadapt, the “resource” parameter for a landscape cell is its carrying 
capacity expressed as the number of individuals, and the “barrier” 
parameter for a landscape cell specifies the threshold number of 
individuals in a neighbouring landscape cell for there to be immi-
gration of individuals from that neighbouring cell. By choosing a 
resource parameter value of 10 for suitable habitat and a barrier 
parameter value of 100 for unsuitable habitat, we ensure that there 
was no immigration from suitable to unsuitable habitats. Thus, we 
consider the unsuitable habitats in the simulations as “absolute” 
barriers.

For the setup of genetic markers, we used 100 bi-allelic loci, 
which were subjected to a mutation rate of 10–4 mutations per 
generation. All the genetic markers were set as neutral to avoid 
selection.

For the setup of the population, we simulated two species of uni-
corns, one with low per-capita dispersal probability (0.1, the golden 
unicorn) and the other with high per-capita dispersal probability 
(0.5, the silver unicorn). The simulation allows individuals in a focal 
landscape cell to disperse one landscape cell per generation, to an 
adjacent landscape cell (eight directions) that has a barrier param-
eter lower than or equal to the number of individuals in the focal 
landscape cell. In addition, the number of individuals in a landscape 
cell was subjected to the logistic growth model with a fixed growth 
rate of 0.5 per time-step.

We designed two scenarios to simulate both biological invasion 
and habitat fragmentation. For the biological invasion scenario, we 
set the initial configuration as 10 individuals in the landscape cell in 
the bottom-left corner of the grid, while for the habitat fragmenta-
tion scenario, we set the initial configuration as 10 individuals in every 
landscape cell. In each scenario, we had two landscape arrangements, 
one with a single barrier and the other with two barriers. We used two 
arrangements in order to test the ability of our program to handle land-
scapes of varying complexity. The barriers were designed to not sep-
arate the entire area into completely isolated areas, to ensure that the 
individuals across the landscape consist of a single population.

F I G U R E  1   ResDisMapper results for simulated data sets corresponding to two species of unicorns over areas with absolute barrier(s), 
after 60 generations. The simulated areas (black cells being suitable habitat and red cells being barriers) are shown in the left-most column. In 
each row, the simulated area is followed by ResDisMapper results for four simulated scenarios (red is high resistance; green is low resistance; 
red and green contour lines delineate areas with statistically significant high or low resistance, respectively; cells with no statistical certainty 
are not displayed; and black circles are sampling locations). The number on each unicorn indicates the dispersal probability. In addition, “BI” 
next to a unicorn indicates a biological invasion scenario, whereas “HF” indicates a habitat fragmentation scenario. Scale bars for resistance 
values are omitted as each map is for an independent data set, such that quantitative comparison of resistance values among graphs is not 
meaningful [Colour figure can be viewed at wileyonlinelibrary.com]

0.1 0.5 0.1 0.5

BI BI HF HF
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All simulations were run on a 10 × 10 grid. Each simulation lasted 
200 generations, sampling every 20 generations. In each sampling 
event, we randomly sampled three individuals (subject to availabil-
ity) from each landscape cell. The genotypic data of 100 loci for the 
samples were then exported for subsequent analyses.

For all the simulated data sets, we used the co-ancestry coefficient 
method (Reynolds, Weir, & Cockerham, 1983) to calculate the genetic 
distance under the nonlinear model for IBD modelling. We also tested 
the five other methods for calculating genetic distance (as per the r 
package poppr), and found that they resulted in similar resistance maps 
to those using the co-ancestry coefficient method. Thus, we only pres-
ent results using the co-ancestry coefficient method. When calculating 
IBD residuals and resistances, we included all pairwise comparisons be-
tween sampled individuals. To illustrate the distribution of resistance 
over the simulated area, we mapped the resistance onto an 18 × 18 grid 
using ResDisMapper. We used an 18 × 18 grid to calculate and visualize 
resistance because of the following chain of reasoning. ResDisMapper 
visualizes resistance over an area that is delimited by the coordinates 
of the individuals. Because each simulated individual is placed at the 
centre of the landscape cell that it is in, the portion of the landscape 
considered by ResDisMapper only covers the interior of the full 10 × 10 
grid of landscape cells, which excludes a “border” with a width equal to 
half a landscape cell (Figure 1). This suggests that resistance should be 
calculated and visualized using a 9 × 9 grid. However, this would result 
in one grid cell containing simulated individuals from more than one lo-
cation (set of coordinates), that is from more than one of the landscape 
cells (Figure 1). To eliminate this incompatibility, we used an 18 × 18 
grid for calculation and visualization of resistance (Figure 1).

The geographical coordinates and genetic data for the sampled 
individuals in the simadapt simulations can be downloaded from 
Github (https​://github.com/takfu​ng/ResDi​sMapp​er/tree/maste​r/
Examp​le_datasets). The files containing the data are labelled accord-
ing to the scenario simulated, with the type of landscape area (single 
or double barrier), biological scenario (biological invasion or habitat 
fragmentation), unicorn species (golden or silver) and number of gen-
erations (60 or 200) given in each label. In addition, the files specify-
ing the two types of landscape area (with a single or double barrier) 
can be downloaded from Github (https​://github.com/takfu​ng/ResDi​
sMapp​er/tree/maste​r/Examp​le_datasets); these files are used in the 
program simadapt. There are three files for each type of landscape 
area: (a) a "barrier file" that gives the coordinates of each landscape 
cell together with corresponding values of the barrier parameter; (b) 
a "resource file" that gives the coordinates of each landscape cell 
together with corresponding values of the resource parameter; and 
(c) a "type file" that gives the coordinates of each landscape cell to-
gether with a number for each cell indicating whether it is a barrier 
or not (the latter has a barrier parameter value of 0).

2.4 | Empirical data sets

We chose empirical data sets from two recently published studies to 
demonstrate the use of ResDisMapper in the two scenarios of biological 

invasion and habitat fragmentation. Both studies fit the criteria of small 
temporal (<200 generations) and spatial scales (<1,000 km2). For the bi-
ological invasion scenario, we chose a rock pigeon (Columba livia) study 
in Singapore (Tang, Low, Lim, Gwee, & Rheindt, 2018). As stated in their 
paper, the rock pigeons form a single population whose introduction 
dates back to 12.5 generations (~15–85 years) ago (Tang et al., 2018). 
For the habitat fragmentation scenario, we chose the golden-crowned 
sifaka (Propithecus tattersalli) study in the Daraina area in northern 
Madagascar (Quéméré,  Crouau-Roy, Rabarivola, Louis Jr, & Chikhi, 
2010). As stated in a follow-up paper (Salmona, Heller, Quéméré, & 
Chikhi, 2017), the golden-crowned sifaka was near-panmictic through-
out the region and then shrank to fragmented habitats ~80 generations 
(~300–1,500 years) ago. We downloaded the genetic and geographical 
data for both studies from online data repositories and converted them 
to the GENEPOP format and tab-delimited table format, respectively.

For both empirical data sets, we used the co-ancestry coef-
ficient method (Reynolds et al., 1983) to calculate the genetic dis-
tance under the nonlinear model for IBD modelling. The five other 
methods for calculating genetic distance (as per the r package poppr) 
produced similar resistance maps to those using the co-ancestry 
coefficient method. Thus, we only present results using the co-an-
cestry coefficient method. For each data set, we used results from 
a spatial autocorrelation analysis to determine the geographical dis-
tance at which the genetic correlation between individuals reaches 
zero, and set the maximum geographical distance in ResDisMapper 
to this distance value when calculating resistance. More specifically, 
this maximum geographical distance determines which sample pairs 
to include for calculation of resistance values based on IBD residuals 
corresponding to sample pairs. In addition, we examined how the 
resistance values changed as the maximum geographical distance 
varied below and above the value at which the genetic correlation 
reaches zero, to assess the sensitivity of our results across different 
spatial scales. In total, for the pigeon data set, we ran six indepen-
dent analyses using sample pairs within 5, 10, 15, 20, 25 and 30 km. 
For each analysis, we projected the distribution of the resistance 
onto a 50 × 25 grid, given that the dimension of Singapore Island is 
around 50 × 25 km. We also ran analyses using sample pairs within 
distances >30 km, but these gave similar results to those from using 
a distance of 30 km; hence, these results are not presented. For the 
sifaka data set, we ran nine independent analyses using sample pairs 
within 5, 10, 15, 20, 25, 30, 35, 40 and 45 km. For each analysis, we 
projected the distribution of the resistance onto a 40 × 45 grid, given 
that the dimension of the studied area is around 40 × 45 km. We also 
ran analyses using sample pairs within distances greater than 45 km, 
but these gave similar results to when using a distance of 45  km; 
hence, these results are not presented.

2.5 | Comparison with other methods

To evaluate the performance of ResDisMapper, we compared the 
results of ResDisMapper to those from two other programs: one 
non-Bayesian program, dresd (Keis et al., 2013), and one Bayesian 
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program, eems (Petkova et al., 2016). We ran all three programs on 
two sets of simulated data. One data set was simulated on an area 
with absolute barriers, whereas the other data set was simulated on 
an area with permeable barriers that provide a continuous gradient 
of resistant values (Shirk, Landguth, & Cushman, 2018). The first 
data set was simulated using simadapt, as described in section 2.3. 
The second data set was randomly chosen from 450 resistance sur-
faces that have continuous resistance values, as provided in Shirk et 
al. (2018) (we randomly chose the data set named set3_r5_model2). 
Using this chosen data set, we ran all three programs with the simu-
lated genetic data extracted at generation 5 and generation 100, to 
calculate resistance over a 256 × 256 grid.

As all three programs require the input of pairwise genetic dis-
tance matrices, we used the co-ancestry coefficient method as im-
plemented in poppr to calculate the genetic distance matrices. In this 
manner, all three programs are run with the same genetic distance 
matrices to avoid differences introduced by using different meth-
ods of calculating genetic distance. For DResD and ResDisMapper, 
we used the nonlinear model to fit the IBD trend that was used to 
calculate IBD residuals.

For DResD, we adjusted some of the default parameters ac-
cording to the simulated spatial scale, but otherwise used the de-
fault parameters. For EEMS, we again adjusted some of the default 
parameters according to the simulated spatial scale and number of 
loci, but otherwise used the default parameters. We also monitored 
the Markov chain Monte Carlo (MCMC) logs visually to ensure con-
vergence of the posterior probability distribution. For the simulated 
data set with absolute barriers, we ran 10,000,000 MCMC iterations 
as a burn-in period and then a further 10,000,000 iterations. For 
the simulated data set with permeable barriers, we ran 20,000,000 
MCMC iterations as a burn-in period and then a further 20,000,000 
iterations, reflecting more iterations required for convergence.

We used confusion matrices to evaluate the performance of 
ResDisMapper, DResD and EEMS when applied to the simulated data 
sets corresponding to the simulated areas with absolute barriers. 
To construct the confusion matrix for each program, we first deter-
mined the number of “positive” cells in the simulated area, which are 
those with high resistance values that have statistical significance 
and certainty (ResDisMapper), statistical significance and power 
(DResD), or statistical significance (EEMS). The remaining cells are 
classified as “negative”. We then determined the proportion of posi-
tive cells that are true positives (i.e., that coincide with the absolute 
barriers). Similarly, we also determined the proportion of negative 
cells that are true negatives (i.e., that do not coincide with absolute 
barriers). In the simadapt simulations used to generate the simulated 
data sets, individuals in a landscape cell can only move to an adjacent 
landscape cell in one generation, such that in the gridded area used 
for calculating resistance, nonbarrier cells adjacent to barrier cells 
are most likely to be classified erroneously as positive cells. Thus, 
we also calculated confusion matrices whereby a positive nonbarrier 
cell adjacent to a barrier cell is not considered as a false positive. 
After calculating the confusion matrices for each of the three pro-
grams, we used the entries in the confusion matrices to calculate 

metrics evaluating how well the programs performed in classifying 
cells as barriers and nonbarriers. The metrics we calculated were the 
kappa statistic (Cohen, 1968), the F1 score (Sasaki, 2007), Youden's 
J (Youden, 1950) and Matthews correlation coefficient (Matthews, 
1975).

To evaluate the performance of a program when applied to a sim-
ulated data set corresponding to a simulated area with permeable 
barriers, we used r to calculate the correlation between the simu-
lated resistance values in the grid cells and the corresponding resis-
tance values calculated by the program.

3  | RESULTS

3.1 | Testing ResDisMapper using simulated data 
sets

Results from the data sets simulated using simadapt indicate that 
ResDisMapper can conclusively detect barrier(s) by mapping high 
resistance with statistical certainty and significance (Figure 1). 
Increasing the complexity of landscape features (from one barrier 
to two barriers) does not substantially reduce the accuracy (Figure 1 
and Figure S2). ResDisMapper is capable of mapping resistance to 
dispersal with high accuracy for both biological invasion and habi-
tat fragmentation scenarios (Figure 1 and Figure S2). ResDisMapper 
also provides consistency of mapping resistance to dispersal for 
groups of organisms with different dispersal probabilities, as dem-
onstrated by the results of resistance mapping on the two species of 
unicorns being relatively consistent under equal landscape features. 
Moreover, within the time range we examined for both biological 
invasion and habitat fragmentation scenarios, the results of mapping 
resistance are consistent across different numbers of generations 
(Figure 1, Figures S2 and S3).

3.2 | Applying ResDisMapper to empirical data sets

Our ResDisMapper results on the pigeons in Singapore indicate high 
resistance to dispersal in central and western Singapore, which 
mainly comprise nonfavourable habitats for the rock pigeons such 
as dense trees and industrial zones. Compared to the mapping of 
resistance to dispersal in the original study (Tang et al., 2018) using 
DResD, the resistance mapping from ResDisMapper is more congru-
ent with the landscape patterns in Singapore (Figure 2 and Figure 
S4). Congruence between mapped resistance and landscape pat-
tern is found regardless of whether resistance was calculated using 
sample pairs of individuals within 5, 10, 15, 20, 25 or 30 km (Figure 
S4). However, as more sample pairs are added to the analysis, the 
signal of positive resistance, as measured by the statistical signifi-
cance, becomes weaker (Figure S4). This pattern probably occurs 
because the inclusion of an increasing number of pairs of individuals 
that are further apart and not clearly separated by a barrier dampens 
strong positive signals in resistance calculations. This effect is best 
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corrected by including only those sampled pairs within the typical 
range of dispersal. According to a previous spatial autocorrelation 
analysis, the typical range of dispersal for pigeons in Singapore was 

estimated to be within 10 km (Tang et al., 2018). Accordingly, the 
resistance map derived using only sampled pairs within 10 km should 
be the most relevant for illustrating the resistance to dispersal of 

F I G U R E  2   ResDisMapper results for a biological invasion case study of rock pigeons across Singapore. Top: urban landscape of Singapore. 
For detailed landscape categorization, please refer to Tang et al. (2018). Blue circles are sampling sites. Bottom: resistance values calculated 
using ResDisMapper with sampled pairs of individuals within 10 km. Red is high resistance; green is low resistance; red and green contour 
lines delineate areas with statistically significant high or low resistance, respectively; cells with no statistical certainty are not displayed; and 
yellow circles are sampling sites [Colour figure can be viewed at wileyonlinelibrary.com]
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pigeons in Singapore, and indeed, we found that this map was most 
congruent with what we expected from the landscape pattern 
(Figure 2).

For our ResDisMapper results on the sifakas in northern 
Madagascar, we found that regardless of whether resistance was 
calculated using sampled pairs within 5, 10, 15, 20, 25, 30, 35, 40 
or 45 km, the resistance map indicates a consistent pattern of high 
resistance around the major town, Daraina (Figure 3 and Figure S5). 
Because the original study (Quéméré et al., 2010) only provided re-
sults from a spatial autocorrelation analysis within the range of single 
forest patches (<5 km), we performed a new analysis using GenAlEx 
version 6.5 (Peakall & Smouse, 2006) to calculate the typical range of 
dispersal of sifakas amongst forest patches. According to the results 
of this spatial autocorrelation analysis, the typical range of disper-
sal for sifakas in the area was estimated to be within 15 km (Figure 
S6). Accordingly, the resistance map derived using only sample pairs 
within 15 km should be the most relevant for illustrating the resis-
tance to dispersal of sifakas in northern Madagascar, and indeed, 
we found that this map was most congruent with what we expected 
from the landscape pattern (Figure 3). In particular, we found that 
there is high resistance at the interface between the regional major 
road “National Road 5A” and the river Manankolana (Figure 3). More 
generally, areas of high resistance to dispersal are either situated 
along relatively big gaps between patches of dry forest or places of 
dense human agricultural activity. Also, the ResDisMapper results 
suggest that the forest patches between Daraina and Nosibe may 
have lost most of their function as a corridor, probably due to rela-
tively intensive human agricultural activity and hunting.

3.3 | Comparison of ResDisMapper with 
other methods

For the 16 simulated scenarios corresponding to the simulated areas 
with absolute barriers (Table S1; Figure 1, Figures S3, S7 and S8), 
ResDisMapper has a higher percentage of true positives (~18 of all 20 
positives) compared to DResD (~7) and EEMS (~5). ResDisMapper also 
produces a higher percentage of false positives (~20 of all 80 nega-
tives) compared to DResD (~6) and EEMS (~6). However, we found 
that ~ 70% of the false positives ResDisMapper produced are adja-
cent to the actual barriers. If we exclude the false positives adjacent 
to the actual barriers, then ResDisMapper produces a number of false 
positives (~7) that is on the same order of magnitude compared with 
DResD (~2) and EEMS (~3).

ResDisMapper also has the best overall performance for the 16 
simulated scenarios when considering the four metrics based on 
the confusion matrices (kappa, F1 score, Youden's J and Matthews 
correlation coefficient), regardless of whether we include or exclude 
false positives adjacent to actual barriers (Figure S2). When there is 
a single barrier, ResDisMapper and DResD perform similarly in detect-
ing the barrier; when there are two barriers, ResDisMapper performs 
better than DResD and EEMS across all eight scenarios (Figure S2). 
Moreover, ResDisMapper has a relatively stable performance across 

all 16 scenarios (Figure 1, Figures S2, S3, S7 and S8). In contrast, for 
some scenarios, DResD and EEMS produce irregular patterns of re-
sistance values or resistance values that lack statistical significance 
(Figures S7 and S8), with some metrics falling to 0 (Figure S2).

For the simulated data set corresponding to the simulated area 
with permeable barriers (Figure S9), we calculated Pearson's cor-
relation coefficient (r) and Spearman's rank correlation coefficient 
(ρ) to test the correlation between simulated resistance values 
and resistance values calculated by the three programs. After five 
generations, resistance values calculated by all three programs ex-
hibited poor correlations with the simulated resistance values (rRes-

DisMapper  =  .023, ρResDisMapper  =  0.010; rDResD  =  .072, ρDResD  =  0.087; 
rEEMS  =  −.048, ρEEMS  =  −0.045). This is probably because the indi-
viduals have not accumulated sufficient genetic divergence from a 
randomized initial status, such that the genetic signal is not strong 
enough for the programs to detect most of the resistance to dis-
persal. However, after 100 generations, resistance values calculated 
using ResDisMapper achieved a substantially stronger correlation 
with the simulated resistance values (rResDisMapper  =  .374, ρResDisMap-

per = 0.400), more so than the correlation for DResD (rDResD =  .204, 
ρDResD = 0.260) and EEMS (rEEMS = −.022, ρEEMS = −0.026).

4  | DISCUSSION

According to tests on both simulated and empirical data sets, 
ResDisMapper can detect fine-scale patterns of resistance to ongo-
ing dispersal with high accuracy using individual-based genetic data. 
Among the three landscape genetic programs that we considered, 
EEMS seems to have performed most poorly in our specific test sce-
narios. A probable reason is that we set the simulated area to the 
scale of a single population, where all the individuals are not com-
pletely isolated. This arrangement may have resulted in high uncer-
tainty in EEMS when computing the ancestral status of individuals, 
because genetically, all individuals are relatively homogeneous. This 
lack of pronounced population subdivision probably accounted 
for the difficulty with which the posterior probability distribution 
reached convergence during EEMS runs, as well as the high inci-
dence of irregularities in EEMS resistance maps (Figures S7, S8 and 
S9). In contrast to EEMS, DResD and ResDisMapper are more capable 
of handling a population in which all the individuals are not com-
pletely isolated, with similar performance on simulated areas with a 
single absolute barrier (Figure 1, Figures S2, S3, S7 and S8). However, 
DResD calculates the resistance value in a grid cell using the IBD re-
siduals from all sampled pairs of individuals, and this may result in 
dilution of weak local signals by relatively strong but remote signals. 
We found signs of this dilution when looking at the performance 
of DResD on simulated areas with two absolute barriers (Figure 1, 
Figures S3, S7 and S8). In this case, for some scenarios, DResD only 
produced high resistance that was statistically significant at one of 
the barriers, whereas for other scenarios DResD did not produce 
high resistance that was statistically significant at either of the two 
barriers.
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Our tests on the simulated data sets show that ResDisMapper 
can detect fine-scale patterns of resistance to ongoing dispersal ac-
curately, using individual-based genetic data from studies focusing 

on a single population or a set of geographically continuous popu-
lations. ResDisMapper calculates resistance using IBD residuals that 
are derived from a comparison of genetic and geographical distances 

F I G U R E  3   ResDisMapper results for a habitat fragmentation case study on golden-crowned sifakas in the Daraina area, northern 
Madagascar. Resistance is calculated using sampled pairs of individuals within 15 km. Red is high resistance; green is low resistance; red and 
green contour lines delineate areas with statistically significant high or low resistance, respectively; cells with no statistical certainty are not 
displayed; and yellow circles are sampling sites [Colour figure can be viewed at wileyonlinelibrary.com]
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for pairs of individuals with an expected IBD trend. Although this 
is broadly similar to the way in which some Bayesian programs 
calculate resistance, our non-Bayesian tool ResDisMapper differs 
by focusing on detecting resistance to ongoing dispersal, without 
performing simulations to trace back historical migrations. In this 
manner, ResDisMapper aims to resolve real-time management issues 
at small temporal scales, instead of the ecological and evolutionary 
history of a species addressed by most Bayesian landscape genetic 
tools, including STRUCTURE (Pritchard et al., 2000), GENELAND 
(Guillot et al., 2005) and EEMS (Petkova et al., 2016). For exam-
ple, for the sifaka data set that we examined, the original study 
(Quéméré et al., 2010) used STRUCTURE to cluster individuals over 
space according to their ancestral genetic status (i.e., genetic differ-
entiation accumulated via isolation over a very long period of time). 
The results from STRUCTURE showed that there is high genetic dif-
ferentiation between clusters either side of the Manankolana River 
(Quéméré et al., 2010; their Figure 2). However, STRUCTURE does 
not emphasize recent dispersal occurring among individuals, which 
can substantially alter genetic patterns inferred by focusing on an-
cestral genetic status. Consequently, results from ResDisMapper 
(Figure 3), which focus on more recent causes of resistance to dis-
persal (such as human settlement, agricultural areas and roads), 
showed a genetic pattern different to that from STRUCTURE. In par-
ticular, individuals no longer show a clear genetic separation along 
the Manankolana River. Instead, there is an area of high resistance 
around the major town of Daraina as well as the interface between 
the Manankolana River and the major road, which separate individ-
uals genetically.

Based on our results, we recommend ResDisMapper for mapping 
resistance at small spatiotemporal scales for a single population or 
geographically continuous populations. Small spatiotemporal scales 
mean that there is no need to account for selection, mutations or 
whether a population is expanding or shrinking. In addition, we only 
recommend using ResDisMapper to study populations which do not 
have signs of major gene flow from immigration. The genotypes that 
immigrants carry can produce extreme IBD residuals that outweigh 
the genetic divergence created by resistance to dispersal, thus re-
sulting in erroneous resistance maps.

Because of its simplicity of approach relative to most other 
existing landscape genetic programs, ResDisMapper does have the 
limitation that it cannot be used to calculate resistance values and 
associated statistics for grid cells without any intersecting lines that 
connect the geographical locations of sampled pairs of individuals, 
or for grid cells with just one intersecting line (because one inter-
secting line is insufficient for calculating statistical certainty of re-
sistance values). Thus, resistance values for such grid cells can only 
be calculated by either more comprehensive sampling in and around 
these cells, or by compromising and reducing the mapping resolu-
tion to obtain larger grid cells that contain at least two intersecting 
lines.

A further consideration is that ResDisMapper calculates re-
sistance using IBD residuals that are derived by determining the 
differences between the genetic distances for a sampled set of 

individuals and an expected IBD trend. This expected IBD trend 
is derived by fitting a linear or saturating function to the pairs of 
geographical and genetic distances corresponding to the sampled 
individuals. Hence, the exact shape of the expected IBD trend de-
pends on the sampling scheme and would vary with properties of 
the sampling scheme, such as sample size. This uncertainty in the 
expected IBD trend would propagate and introduce uncertainty 
into the IBD residuals and hence resistance values. We anticipate 
that the magnitude of this uncertainty would typically be quite 
small given that the expected IBD trend is typically fitted to many 
observed pairs of geographical and genetic distances. Nonetheless, 
to minimize this uncertainty, we encourage the identification of ge-
netic markers that are poorly sampled, which can then be excluded 
from calculation of the expected IBD trend, IBD residuals and re-
sistance values.

Overall, the utility and accuracy of ResDisMapper is fundamen-
tally dependent on the comprehensiveness of sampling, as for all 
other genetic programs. An alternative method of deriving the ex-
pected IBD trend is to use a suitably parameterized mechanistic 
model. However, such a method would still be affected by sampling 
uncertainty because the parameters of the mechanistic model need 
to be estimated using sampled data.
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